diff options
-rw-r--r-- | extensions-builtin/Lora/network_oft.py | 20 |
1 files changed, 2 insertions, 18 deletions
diff --git a/extensions-builtin/Lora/network_oft.py b/extensions-builtin/Lora/network_oft.py index 44465f7a..e3ae61a2 100644 --- a/extensions-builtin/Lora/network_oft.py +++ b/extensions-builtin/Lora/network_oft.py @@ -21,6 +21,8 @@ class NetworkModuleOFT(network.NetworkModule): self.lin_module = None self.org_module: list[torch.Module] = [self.sd_module] + self.scale = 1.0 + # kohya-ss if "oft_blocks" in weights.w.keys(): self.is_kohya = True @@ -78,21 +80,3 @@ class NetworkModuleOFT(network.NetworkModule): print(torch.norm(updown)) output_shape = orig_weight.shape return self.finalize_updown(updown, orig_weight, output_shape) - - def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None): - if self.bias is not None: - updown = updown.reshape(self.bias.shape) - updown += self.bias.to(orig_weight.device, dtype=orig_weight.dtype) - updown = updown.reshape(output_shape) - - if len(output_shape) == 4: - updown = updown.reshape(output_shape) - - if orig_weight.size().numel() == updown.size().numel(): - updown = updown.reshape(orig_weight.shape) - - if ex_bias is not None: - ex_bias = ex_bias * self.multiplier() - - # Ignore calc_scale, which is not used in OFT. - return updown * self.multiplier(), ex_bias |