diff options
-rw-r--r-- | javascript/hints.js | 81 | ||||
-rw-r--r-- | modules/generation_parameters_copypaste.py | 16 | ||||
-rw-r--r-- | modules/processing.py | 4 | ||||
-rw-r--r-- | modules/script_callbacks.py | 20 | ||||
-rw-r--r-- | modules/sd_hijack.py | 20 | ||||
-rw-r--r-- | modules/sd_models.py | 4 | ||||
-rw-r--r-- | modules/sd_samplers_kdiffusion.py | 40 | ||||
-rw-r--r-- | modules/sd_unet.py | 92 | ||||
-rw-r--r-- | modules/shared.py | 5 | ||||
-rw-r--r-- | modules/shared_items.py | 11 | ||||
-rw-r--r-- | modules/ui_tempdir.py | 14 | ||||
-rw-r--r-- | scripts/xyz_grid.py | 6 | ||||
-rw-r--r-- | webui.py | 4 | ||||
-rwxr-xr-x | webui.sh | 2 |
14 files changed, 277 insertions, 42 deletions
diff --git a/javascript/hints.js b/javascript/hints.js index 46f342cb..05ae5f22 100644 --- a/javascript/hints.js +++ b/javascript/hints.js @@ -116,17 +116,25 @@ var titles = { "Negative Guidance minimum sigma": "Skip negative prompt for steps where image is already mostly denoised; the higher this value, the more skips there will be; provides increased performance in exchange for minor quality reduction." }; -function updateTooltipForSpan(span) { - if (span.title) return; // already has a title +function updateTooltip(element) { + if (element.title) return; // already has a title - let tooltip = localization[titles[span.textContent]] || titles[span.textContent]; + let text = element.textContent; + let tooltip = localization[titles[text]] || titles[text]; if (!tooltip) { - tooltip = localization[titles[span.value]] || titles[span.value]; + let value = element.value; + if (value) tooltip = localization[titles[value]] || titles[value]; } if (!tooltip) { - for (const c of span.classList) { + // Gradio dropdown options have `data-value`. + let dataValue = element.dataset.value; + if (dataValue) tooltip = localization[titles[dataValue]] || titles[dataValue]; + } + + if (!tooltip) { + for (const c of element.classList) { if (c in titles) { tooltip = localization[titles[c]] || titles[c]; break; @@ -135,34 +143,53 @@ function updateTooltipForSpan(span) { } if (tooltip) { - span.title = tooltip; + element.title = tooltip; } } -function updateTooltipForSelect(select) { - if (select.onchange != null) return; +// Nodes to check for adding tooltips. +const tooltipCheckNodes = new Set(); +// Timer for debouncing tooltip check. +let tooltipCheckTimer = null; - select.onchange = function() { - select.title = localization[titles[select.value]] || titles[select.value] || ""; - }; +function processTooltipCheckNodes() { + for (const node of tooltipCheckNodes) { + updateTooltip(node); + } + tooltipCheckNodes.clear(); } -var observedTooltipElements = {SPAN: 1, BUTTON: 1, SELECT: 1, P: 1}; - -onUiUpdate(function(m) { - m.forEach(function(record) { - record.addedNodes.forEach(function(node) { - if (observedTooltipElements[node.tagName]) { - updateTooltipForSpan(node); - } - if (node.tagName == "SELECT") { - updateTooltipForSelect(node); +onUiUpdate(function(mutationRecords) { + for (const record of mutationRecords) { + if (record.type === "childList" && record.target.classList.contains("options")) { + // This smells like a Gradio dropdown menu having changed, + // so let's enqueue an update for the input element that shows the current value. + let wrap = record.target.parentNode; + let input = wrap?.querySelector("input"); + if (input) { + input.title = ""; // So we'll even have a chance to update it. + tooltipCheckNodes.add(input); } - - if (node.querySelectorAll) { - node.querySelectorAll('span, button, select, p').forEach(updateTooltipForSpan); - node.querySelectorAll('select').forEach(updateTooltipForSelect); + } + for (const node of record.addedNodes) { + if (node.nodeType === Node.ELEMENT_NODE && !node.classList.contains("hide")) { + if (!node.title) { + if ( + node.tagName === "SPAN" || + node.tagName === "BUTTON" || + node.tagName === "P" || + node.tagName === "INPUT" || + (node.tagName === "LI" && node.classList.contains("item")) // Gradio dropdown item + ) { + tooltipCheckNodes.add(node); + } + } + node.querySelectorAll('span, button, p').forEach(n => tooltipCheckNodes.add(n)); } - }); - }); + } + } + if (tooltipCheckNodes.size) { + clearTimeout(tooltipCheckTimer); + tooltipCheckTimer = setTimeout(processTooltipCheckNodes, 1000); + } }); diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index d5f0a49b..81aef502 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -306,6 +306,18 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model if "RNG" not in res:
res["RNG"] = "GPU"
+ if "Schedule type" not in res:
+ res["Schedule type"] = "Automatic"
+
+ if "Schedule max sigma" not in res:
+ res["Schedule max sigma"] = 0
+
+ if "Schedule min sigma" not in res:
+ res["Schedule min sigma"] = 0
+
+ if "Schedule rho" not in res:
+ res["Schedule rho"] = 0
+
return res
@@ -318,6 +330,10 @@ infotext_to_setting_name_mapping = [ ('Conditional mask weight', 'inpainting_mask_weight'),
('Model hash', 'sd_model_checkpoint'),
('ENSD', 'eta_noise_seed_delta'),
+ ('Schedule type', 'k_sched_type'),
+ ('Schedule max sigma', 'sigma_max'),
+ ('Schedule min sigma', 'sigma_min'),
+ ('Schedule rho', 'rho'),
('Noise multiplier', 'initial_noise_multiplier'),
('Eta', 'eta_ancestral'),
('Eta DDIM', 'eta_ddim'),
diff --git a/modules/processing.py b/modules/processing.py index 29a3743f..b75f2515 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -13,7 +13,7 @@ from skimage import exposure from typing import Any, Dict, List
import modules.sd_hijack
-from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common
+from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet
from modules.sd_hijack import model_hijack
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
@@ -674,6 +674,8 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: if shared.opts.live_previews_enable and opts.show_progress_type == "Approx NN":
sd_vae_approx.model()
+ sd_unet.apply_unet()
+
if state.job_count == -1:
state.job_count = p.n_iter
diff --git a/modules/script_callbacks.py b/modules/script_callbacks.py index 40f388a5..d2728e12 100644 --- a/modules/script_callbacks.py +++ b/modules/script_callbacks.py @@ -111,6 +111,7 @@ callback_map = dict( callbacks_before_ui=[],
callbacks_on_reload=[],
callbacks_list_optimizers=[],
+ callbacks_list_unets=[],
)
@@ -271,6 +272,18 @@ def list_optimizers_callback(): return res
+def list_unets_callback():
+ res = []
+
+ for c in callback_map['callbacks_list_unets']:
+ try:
+ c.callback(res)
+ except Exception:
+ report_exception(c, 'list_unets')
+
+ return res
+
+
def add_callback(callbacks, fun):
stack = [x for x in inspect.stack() if x.filename != __file__]
filename = stack[0].filename if len(stack) > 0 else 'unknown file'
@@ -430,3 +443,10 @@ def on_list_optimizers(callback): to it."""
add_callback(callback_map['callbacks_list_optimizers'], callback)
+
+
+def on_list_unets(callback):
+ """register a function to be called when UI is making a list of alternative options for unet.
+ The function will be called with one argument, a list, and shall add objects of type modules.sd_unet.SdUnetOption to it."""
+
+ add_callback(callback_map['callbacks_list_unets'], callback)
diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index f93df0a6..487dfd60 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -3,7 +3,7 @@ from torch.nn.functional import silu from types import MethodType
import modules.textual_inversion.textual_inversion
-from modules import devices, sd_hijack_optimizations, shared, script_callbacks, errors
+from modules import devices, sd_hijack_optimizations, shared, script_callbacks, errors, sd_unet
from modules.hypernetworks import hypernetwork
from modules.shared import cmd_opts
from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr
@@ -43,7 +43,7 @@ def list_optimizers(): optimizers.extend(new_optimizers)
-def apply_optimizations():
+def apply_optimizations(option=None):
global current_optimizer
undo_optimizations()
@@ -60,7 +60,7 @@ def apply_optimizations(): current_optimizer.undo()
current_optimizer = None
- selection = shared.opts.cross_attention_optimization
+ selection = option or shared.opts.cross_attention_optimization
if selection == "Automatic" and len(optimizers) > 0:
matching_optimizer = next(iter([x for x in optimizers if x.cmd_opt and getattr(shared.cmd_opts, x.cmd_opt, False)]), optimizers[0])
else:
@@ -72,12 +72,13 @@ def apply_optimizations(): matching_optimizer = optimizers[0]
if matching_optimizer is not None:
- print(f"Applying optimization: {matching_optimizer.name}... ", end='')
+ print(f"Applying attention optimization: {matching_optimizer.name}... ", end='')
matching_optimizer.apply()
print("done.")
current_optimizer = matching_optimizer
return current_optimizer.name
else:
+ print("Disabling attention optimization")
return ''
@@ -155,9 +156,9 @@ class StableDiffusionModelHijack: def __init__(self):
self.embedding_db.add_embedding_dir(cmd_opts.embeddings_dir)
- def apply_optimizations(self):
+ def apply_optimizations(self, option=None):
try:
- self.optimization_method = apply_optimizations()
+ self.optimization_method = apply_optimizations(option)
except Exception as e:
errors.display(e, "applying cross attention optimization")
undo_optimizations()
@@ -194,6 +195,11 @@ class StableDiffusionModelHijack: self.layers = flatten(m)
+ if not hasattr(ldm.modules.diffusionmodules.openaimodel, 'copy_of_UNetModel_forward_for_webui'):
+ ldm.modules.diffusionmodules.openaimodel.copy_of_UNetModel_forward_for_webui = ldm.modules.diffusionmodules.openaimodel.UNetModel.forward
+
+ ldm.modules.diffusionmodules.openaimodel.UNetModel.forward = sd_unet.UNetModel_forward
+
def undo_hijack(self, m):
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
m.cond_stage_model = m.cond_stage_model.wrapped
@@ -215,6 +221,8 @@ class StableDiffusionModelHijack: self.layers = None
self.clip = None
+ ldm.modules.diffusionmodules.openaimodel.UNetModel.forward = ldm.modules.diffusionmodules.openaimodel.copy_of_UNetModel_forward_for_webui
+
def apply_circular(self, enable):
if self.circular_enabled == enable:
return
diff --git a/modules/sd_models.py b/modules/sd_models.py index 91b3eb11..835bc016 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -14,7 +14,7 @@ import ldm.modules.midas as midas from ldm.util import instantiate_from_config
-from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config
+from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config, sd_unet
from modules.sd_hijack_inpainting import do_inpainting_hijack
from modules.timer import Timer
import tomesd
@@ -532,6 +532,8 @@ def reload_model_weights(sd_model=None, info=None): if sd_model.sd_model_checkpoint == checkpoint_info.filename:
return
+ sd_unet.apply_unet("None")
+
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.send_everything_to_cpu()
else:
diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index 638e0ac9..e9ba2c61 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -44,6 +44,14 @@ sampler_extra_params = { 'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
}
+k_diffusion_samplers_map = {x.name: x for x in samplers_data_k_diffusion}
+k_diffusion_scheduler = {
+ 'Automatic': None,
+ 'karras': k_diffusion.sampling.get_sigmas_karras,
+ 'exponential': k_diffusion.sampling.get_sigmas_exponential,
+ 'polyexponential': k_diffusion.sampling.get_sigmas_polyexponential
+}
+
class CFGDenoiser(torch.nn.Module):
"""
@@ -265,6 +273,13 @@ class KDiffusionSampler: try:
return func()
+ except RecursionError:
+ print(
+ 'Encountered RecursionError during sampling, returning last latent. '
+ 'rho >5 with a polyexponential scheduler may cause this error. '
+ 'You should try to use a smaller rho value instead.'
+ )
+ return self.last_latent
except sd_samplers_common.InterruptedException:
return self.last_latent
@@ -304,6 +319,31 @@ class KDiffusionSampler: if p.sampler_noise_scheduler_override:
sigmas = p.sampler_noise_scheduler_override(steps)
+ elif opts.k_sched_type != "Automatic":
+ m_sigma_min, m_sigma_max = (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
+ sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (m_sigma_min, m_sigma_max)
+ sigmas_kwargs = {
+ 'sigma_min': sigma_min,
+ 'sigma_max': sigma_max,
+ }
+
+ sigmas_func = k_diffusion_scheduler[opts.k_sched_type]
+ p.extra_generation_params["Schedule type"] = opts.k_sched_type
+
+ if opts.sigma_min != m_sigma_min and opts.sigma_min != 0:
+ sigmas_kwargs['sigma_min'] = opts.sigma_min
+ p.extra_generation_params["Schedule min sigma"] = opts.sigma_min
+ if opts.sigma_max != m_sigma_max and opts.sigma_max != 0:
+ sigmas_kwargs['sigma_max'] = opts.sigma_max
+ p.extra_generation_params["Schedule max sigma"] = opts.sigma_max
+
+ default_rho = 1. if opts.k_sched_type == "polyexponential" else 7.
+
+ if opts.k_sched_type != 'exponential' and opts.rho != 0 and opts.rho != default_rho:
+ sigmas_kwargs['rho'] = opts.rho
+ p.extra_generation_params["Schedule rho"] = opts.rho
+
+ sigmas = sigmas_func(n=steps, **sigmas_kwargs, device=shared.device)
elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
diff --git a/modules/sd_unet.py b/modules/sd_unet.py new file mode 100644 index 00000000..6d708ad2 --- /dev/null +++ b/modules/sd_unet.py @@ -0,0 +1,92 @@ +import torch.nn
+import ldm.modules.diffusionmodules.openaimodel
+
+from modules import script_callbacks, shared, devices
+
+unet_options = []
+current_unet_option = None
+current_unet = None
+
+
+def list_unets():
+ new_unets = script_callbacks.list_unets_callback()
+
+ unet_options.clear()
+ unet_options.extend(new_unets)
+
+
+def get_unet_option(option=None):
+ option = option or shared.opts.sd_unet
+
+ if option == "None":
+ return None
+
+ if option == "Automatic":
+ name = shared.sd_model.sd_checkpoint_info.model_name
+
+ options = [x for x in unet_options if x.model_name == name]
+
+ option = options[0].label if options else "None"
+
+ return next(iter([x for x in unet_options if x.label == option]), None)
+
+
+def apply_unet(option=None):
+ global current_unet_option
+ global current_unet
+
+ new_option = get_unet_option(option)
+ if new_option == current_unet_option:
+ return
+
+ if current_unet is not None:
+ print(f"Dectivating unet: {current_unet.option.label}")
+ current_unet.deactivate()
+
+ current_unet_option = new_option
+ if current_unet_option is None:
+ current_unet = None
+
+ if not (shared.cmd_opts.lowvram or shared.cmd_opts.medvram):
+ shared.sd_model.model.diffusion_model.to(devices.device)
+
+ return
+
+ shared.sd_model.model.diffusion_model.to(devices.cpu)
+ devices.torch_gc()
+
+ current_unet = current_unet_option.create_unet()
+ current_unet.option = current_unet_option
+ print(f"Activating unet: {current_unet.option.label}")
+ current_unet.activate()
+
+
+class SdUnetOption:
+ model_name = None
+ """name of related checkpoint - this option will be selected automatically for unet if the name of checkpoint matches this"""
+
+ label = None
+ """name of the unet in UI"""
+
+ def create_unet(self):
+ """returns SdUnet object to be used as a Unet instead of built-in unet when making pictures"""
+ raise NotImplementedError()
+
+
+class SdUnet(torch.nn.Module):
+ def forward(self, x, timesteps, context, *args, **kwargs):
+ raise NotImplementedError()
+
+ def activate(self):
+ pass
+
+ def deactivate(self):
+ pass
+
+
+def UNetModel_forward(self, x, timesteps=None, context=None, *args, **kwargs):
+ if current_unet is not None:
+ return current_unet.forward(x, timesteps, context, *args, **kwargs)
+
+ return ldm.modules.diffusionmodules.openaimodel.copy_of_UNetModel_forward_for_webui(self, x, timesteps, context, *args, **kwargs)
+
diff --git a/modules/shared.py b/modules/shared.py index 0897f937..daab38dc 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -403,6 +403,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), { "sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
"sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list).info("choose VAE model: Automatic = use one with same filename as checkpoint; None = use VAE from checkpoint"),
"sd_vae_as_default": OptionInfo(True, "Ignore selected VAE for stable diffusion checkpoints that have their own .vae.pt next to them"),
+ "sd_unet": OptionInfo("Automatic", "SD Unet", gr.Dropdown, lambda: {"choices": shared_items.sd_unet_items()}, refresh=shared_items.refresh_unet_list).info("choose Unet model: Automatic = use one with same filename as checkpoint; None = use Unet from checkpoint"),
"inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01}),
"img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
@@ -517,6 +518,10 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters" 's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
+ 'k_sched_type': OptionInfo("Automatic", "scheduler type", gr.Dropdown, {"choices": ["Automatic", "karras", "exponential", "polyexponential"]}).info("lets you override the noise schedule for k-diffusion samplers; choosing Automatic disables the three parameters below"),
+ 'sigma_min': OptionInfo(0.0, "sigma min", gr.Number).info("0 = default (~0.03); minimum noise strength for k-diffusion noise scheduler"),
+ 'sigma_max': OptionInfo(0.0, "sigma max", gr.Number).info("0 = default (~14.6); maximum noise strength for k-diffusion noise schedule"),
+ 'rho': OptionInfo(0.0, "rho", gr.Number).info("0 = default (7 for karras, 1 for polyexponential); higher values result in a more steep noise schedule (decreases faster)"),
'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}).info("ENSD; does not improve anything, just produces different results for ancestral samplers - only useful for reproducing images"),
'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma").link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/6044"),
'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "bh2", "vary_coeff"]}),
diff --git a/modules/shared_items.py b/modules/shared_items.py index 2a8713c8..7f306a06 100644 --- a/modules/shared_items.py +++ b/modules/shared_items.py @@ -29,3 +29,14 @@ def cross_attention_optimizations(): return ["Automatic"] + [x.title() for x in modules.sd_hijack.optimizers] + ["None"]
+def sd_unet_items():
+ import modules.sd_unet
+
+ return ["Automatic"] + [x.label for x in modules.sd_unet.unet_options] + ["None"]
+
+
+def refresh_unet_list():
+ import modules.sd_unet
+
+ modules.sd_unet.list_unets()
+
diff --git a/modules/ui_tempdir.py b/modules/ui_tempdir.py index f05049e1..7f6b42ae 100644 --- a/modules/ui_tempdir.py +++ b/modules/ui_tempdir.py @@ -4,6 +4,7 @@ from collections import namedtuple from pathlib import Path
import gradio as gr
+import gradio.components
from PIL import PngImagePlugin
@@ -31,13 +32,16 @@ def check_tmp_file(gradio, filename): return False
-def save_pil_to_file(pil_image, dir=None):
+def save_pil_to_file(self, pil_image, dir=None):
already_saved_as = getattr(pil_image, 'already_saved_as', None)
if already_saved_as and os.path.isfile(already_saved_as):
register_tmp_file(shared.demo, already_saved_as)
+ filename = already_saved_as
- file_obj = Savedfile(f'{already_saved_as}?{os.path.getmtime(already_saved_as)}')
- return file_obj
+ if not shared.opts.save_images_add_number:
+ filename += f'?{os.path.getmtime(already_saved_as)}'
+
+ return filename
if shared.opts.temp_dir != "":
dir = shared.opts.temp_dir
@@ -51,11 +55,11 @@ def save_pil_to_file(pil_image, dir=None): file_obj = tempfile.NamedTemporaryFile(delete=False, suffix=".png", dir=dir)
pil_image.save(file_obj, pnginfo=(metadata if use_metadata else None))
- return file_obj
+ return file_obj.name
# override save to file function so that it also writes PNG info
-gr.processing_utils.save_pil_to_file = save_pil_to_file
+gradio.components.IOComponent.pil_to_temp_file = save_pil_to_file
def on_tmpdir_changed():
diff --git a/scripts/xyz_grid.py b/scripts/xyz_grid.py index da820b39..7821cc65 100644 --- a/scripts/xyz_grid.py +++ b/scripts/xyz_grid.py @@ -10,7 +10,7 @@ import numpy as np import modules.scripts as scripts
import gradio as gr
-from modules import images, sd_samplers, processing, sd_models, sd_vae
+from modules import images, sd_samplers, processing, sd_models, sd_vae, sd_samplers_kdiffusion
from modules.processing import process_images, Processed, StableDiffusionProcessingTxt2Img
from modules.shared import opts, state
import modules.shared as shared
@@ -220,6 +220,10 @@ axis_options = [ AxisOption("Sigma min", float, apply_field("s_tmin")),
AxisOption("Sigma max", float, apply_field("s_tmax")),
AxisOption("Sigma noise", float, apply_field("s_noise")),
+ AxisOption("Schedule type", str, apply_override("k_sched_type"), choices=lambda: list(sd_samplers_kdiffusion.k_diffusion_scheduler)),
+ AxisOption("Schedule min sigma", float, apply_override("sigma_min")),
+ AxisOption("Schedule max sigma", float, apply_override("sigma_max")),
+ AxisOption("Schedule rho", float, apply_override("rho")),
AxisOption("Eta", float, apply_field("eta")),
AxisOption("Clip skip", int, apply_clip_skip),
AxisOption("Denoising", float, apply_field("denoising_strength")),
@@ -58,6 +58,7 @@ import modules.sd_hijack import modules.sd_hijack_optimizations
import modules.sd_models
import modules.sd_vae
+import modules.sd_unet
import modules.txt2img
import modules.script_callbacks
import modules.textual_inversion.textual_inversion
@@ -291,6 +292,9 @@ def initialize_rest(*, reload_script_modules=False): modules.sd_hijack.list_optimizers()
startup_timer.record("scripts list_optimizers")
+ modules.sd_unet.list_unets()
+ startup_timer.record("scripts list_unets")
+
def load_model():
"""
Accesses shared.sd_model property to load model.
@@ -193,7 +193,7 @@ fi # Try using TCMalloc on Linux prepare_tcmalloc() { if [[ "${OSTYPE}" == "linux"* ]] && [[ -z "${NO_TCMALLOC}" ]] && [[ -z "${LD_PRELOAD}" ]]; then - TCMALLOC="$(ldconfig -p | grep -Po "libtcmalloc.so.\d" | head -n 1)" + TCMALLOC="$(PATH=/usr/sbin:$PATH ldconfig -p | grep -Po "libtcmalloc(_minimal|)\.so\.\d" | head -n 1)" if [[ ! -z "${TCMALLOC}" ]]; then echo "Using TCMalloc: ${TCMALLOC}" export LD_PRELOAD="${TCMALLOC}" |