aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--.github/workflows/on_pull_request.yaml2
-rw-r--r--.github/workflows/run_tests.yaml4
-rw-r--r--extensions-builtin/LDSR/scripts/ldsr_model.py20
-rw-r--r--extensions-builtin/ScuNET/scripts/scunet_model.py26
-rw-r--r--extensions-builtin/SwinIR/scripts/swinir_model.py57
-rw-r--r--extensions-builtin/canvas-zoom-and-pan/javascript/zoom.js30
-rw-r--r--extensions-builtin/canvas-zoom-and-pan/scripts/hotkey_config.py1
-rw-r--r--javascript/extensions.js18
-rw-r--r--modules/api/api.py128
-rw-r--r--modules/api/models.py4
-rw-r--r--modules/call_queue.py5
-rw-r--r--modules/cmd_args.py2
-rw-r--r--modules/codeformer_model.py4
-rw-r--r--modules/devices.py7
-rw-r--r--modules/esrgan_model.py23
-rw-r--r--modules/extras.py3
-rw-r--r--modules/generation_parameters_copypaste.py29
-rw-r--r--modules/gfpgan_model.py2
-rw-r--r--modules/hypernetworks/hypernetwork.py24
-rw-r--r--modules/images.py45
-rw-r--r--modules/img2img.py5
-rw-r--r--modules/interrogate.py3
-rw-r--r--modules/launch_utils.py6
-rw-r--r--modules/mac_specific.py23
-rw-r--r--modules/modelloader.py31
-rw-r--r--modules/paths.py14
-rw-r--r--modules/postprocessing.py7
-rw-r--r--modules/processing.py18
-rw-r--r--modules/realesrgan_model.py33
-rw-r--r--modules/scripts.py3
-rw-r--r--modules/sd_models.py7
-rw-r--r--modules/shared.py15
-rw-r--r--modules/textual_inversion/logging.py48
-rw-r--r--modules/textual_inversion/preprocess.py2
-rw-r--r--modules/txt2img.py6
-rw-r--r--modules/ui.py6
-rw-r--r--modules/ui_extensions.py29
-rw-r--r--modules/ui_extra_networks.py4
-rw-r--r--style.css17
-rw-r--r--webui.py20
-rwxr-xr-xwebui.sh12
41 files changed, 433 insertions, 310 deletions
diff --git a/.github/workflows/on_pull_request.yaml b/.github/workflows/on_pull_request.yaml
index 7b7219fd..8ebf5918 100644
--- a/.github/workflows/on_pull_request.yaml
+++ b/.github/workflows/on_pull_request.yaml
@@ -18,7 +18,7 @@ jobs:
# not to have GHA download an (at the time of writing) 4 GB cache
# of PyTorch and other dependencies.
- name: Install Ruff
- run: pip install ruff==0.0.265
+ run: pip install ruff==0.0.272
- name: Run Ruff
run: ruff .
lint-js:
diff --git a/.github/workflows/run_tests.yaml b/.github/workflows/run_tests.yaml
index 226cf759..178c026a 100644
--- a/.github/workflows/run_tests.yaml
+++ b/.github/workflows/run_tests.yaml
@@ -42,7 +42,7 @@ jobs:
--no-half
--disable-opt-split-attention
--use-cpu all
- --add-stop-route
+ --api-server-stop
2>&1 | tee output.txt &
- name: Run tests
run: |
@@ -50,7 +50,7 @@ jobs:
python -m pytest -vv --junitxml=test/results.xml --cov . --cov-report=xml --verify-base-url test
- name: Kill test server
if: always()
- run: curl -vv -XPOST http://127.0.0.1:7860/_stop && sleep 10
+ run: curl -vv -XPOST http://127.0.0.1:7860/sdapi/v1/server-stop && sleep 10
- name: Show coverage
run: |
python -m coverage combine .coverage*
diff --git a/extensions-builtin/LDSR/scripts/ldsr_model.py b/extensions-builtin/LDSR/scripts/ldsr_model.py
index dbd6d331..bd78dece 100644
--- a/extensions-builtin/LDSR/scripts/ldsr_model.py
+++ b/extensions-builtin/LDSR/scripts/ldsr_model.py
@@ -1,7 +1,6 @@
import os
-from basicsr.utils.download_util import load_file_from_url
-
+from modules.modelloader import load_file_from_url
from modules.upscaler import Upscaler, UpscalerData
from ldsr_model_arch import LDSR
from modules import shared, script_callbacks, errors
@@ -43,20 +42,17 @@ class UpscalerLDSR(Upscaler):
if local_safetensors_path is not None and os.path.exists(local_safetensors_path):
model = local_safetensors_path
else:
- model = local_ckpt_path if local_ckpt_path is not None else load_file_from_url(url=self.model_url, model_dir=self.model_download_path, file_name="model.ckpt", progress=True)
+ model = local_ckpt_path or load_file_from_url(self.model_url, model_dir=self.model_download_path, file_name="model.ckpt")
- yaml = local_yaml_path if local_yaml_path is not None else load_file_from_url(url=self.yaml_url, model_dir=self.model_download_path, file_name="project.yaml", progress=True)
+ yaml = local_yaml_path or load_file_from_url(self.yaml_url, model_dir=self.model_download_path, file_name="project.yaml")
- try:
- return LDSR(model, yaml)
- except Exception:
- errors.report("Error importing LDSR", exc_info=True)
- return None
+ return LDSR(model, yaml)
def do_upscale(self, img, path):
- ldsr = self.load_model(path)
- if ldsr is None:
- print("NO LDSR!")
+ try:
+ ldsr = self.load_model(path)
+ except Exception:
+ errors.report(f"Failed loading LDSR model {path}", exc_info=True)
return img
ddim_steps = shared.opts.ldsr_steps
return ldsr.super_resolution(img, ddim_steps, self.scale)
diff --git a/extensions-builtin/ScuNET/scripts/scunet_model.py b/extensions-builtin/ScuNET/scripts/scunet_model.py
index 85b4505f..ffef26b2 100644
--- a/extensions-builtin/ScuNET/scripts/scunet_model.py
+++ b/extensions-builtin/ScuNET/scripts/scunet_model.py
@@ -1,4 +1,3 @@
-import os.path
import sys
import PIL.Image
@@ -6,12 +5,11 @@ import numpy as np
import torch
from tqdm import tqdm
-from basicsr.utils.download_util import load_file_from_url
-
import modules.upscaler
from modules import devices, modelloader, script_callbacks, errors
-from scunet_model_arch import SCUNet as net
+from scunet_model_arch import SCUNet
+from modules.modelloader import load_file_from_url
from modules.shared import opts
@@ -28,7 +26,7 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
scalers = []
add_model2 = True
for file in model_paths:
- if "http" in file:
+ if file.startswith("http"):
name = self.model_name
else:
name = modelloader.friendly_name(file)
@@ -89,9 +87,10 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
torch.cuda.empty_cache()
- model = self.load_model(selected_file)
- if model is None:
- print(f"ScuNET: Unable to load model from {selected_file}", file=sys.stderr)
+ try:
+ model = self.load_model(selected_file)
+ except Exception as e:
+ print(f"ScuNET: Unable to load model from {selected_file}: {e}", file=sys.stderr)
return img
device = devices.get_device_for('scunet')
@@ -119,15 +118,12 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
def load_model(self, path: str):
device = devices.get_device_for('scunet')
- if "http" in path:
- filename = load_file_from_url(url=self.model_url, model_dir=self.model_download_path, file_name="%s.pth" % self.name, progress=True)
+ if path.startswith("http"):
+ # TODO: this doesn't use `path` at all?
+ filename = load_file_from_url(self.model_url, model_dir=self.model_download_path, file_name=f"{self.name}.pth")
else:
filename = path
- if not os.path.exists(os.path.join(self.model_path, filename)) or filename is None:
- print(f"ScuNET: Unable to load model from {filename}", file=sys.stderr)
- return None
-
- model = net(in_nc=3, config=[4, 4, 4, 4, 4, 4, 4], dim=64)
+ model = SCUNet(in_nc=3, config=[4, 4, 4, 4, 4, 4, 4], dim=64)
model.load_state_dict(torch.load(filename), strict=True)
model.eval()
for _, v in model.named_parameters():
diff --git a/extensions-builtin/SwinIR/scripts/swinir_model.py b/extensions-builtin/SwinIR/scripts/swinir_model.py
index 1c7bf325..c6bc53a8 100644
--- a/extensions-builtin/SwinIR/scripts/swinir_model.py
+++ b/extensions-builtin/SwinIR/scripts/swinir_model.py
@@ -1,17 +1,17 @@
-import os
+import sys
import numpy as np
import torch
from PIL import Image
-from basicsr.utils.download_util import load_file_from_url
from tqdm import tqdm
from modules import modelloader, devices, script_callbacks, shared
from modules.shared import opts, state
-from swinir_model_arch import SwinIR as net
-from swinir_model_arch_v2 import Swin2SR as net2
+from swinir_model_arch import SwinIR
+from swinir_model_arch_v2 import Swin2SR
from modules.upscaler import Upscaler, UpscalerData
+SWINIR_MODEL_URL = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR-L_x4_GAN.pth"
device_swinir = devices.get_device_for('swinir')
@@ -19,16 +19,14 @@ device_swinir = devices.get_device_for('swinir')
class UpscalerSwinIR(Upscaler):
def __init__(self, dirname):
self.name = "SwinIR"
- self.model_url = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0" \
- "/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR" \
- "-L_x4_GAN.pth "
+ self.model_url = SWINIR_MODEL_URL
self.model_name = "SwinIR 4x"
self.user_path = dirname
super().__init__()
scalers = []
model_files = self.find_models(ext_filter=[".pt", ".pth"])
for model in model_files:
- if "http" in model:
+ if model.startswith("http"):
name = self.model_name
else:
name = modelloader.friendly_name(model)
@@ -37,8 +35,10 @@ class UpscalerSwinIR(Upscaler):
self.scalers = scalers
def do_upscale(self, img, model_file):
- model = self.load_model(model_file)
- if model is None:
+ try:
+ model = self.load_model(model_file)
+ except Exception as e:
+ print(f"Failed loading SwinIR model {model_file}: {e}", file=sys.stderr)
return img
model = model.to(device_swinir, dtype=devices.dtype)
img = upscale(img, model)
@@ -49,30 +49,31 @@ class UpscalerSwinIR(Upscaler):
return img
def load_model(self, path, scale=4):
- if "http" in path:
- dl_name = "%s%s" % (self.model_name.replace(" ", "_"), ".pth")
- filename = load_file_from_url(url=path, model_dir=self.model_download_path, file_name=dl_name, progress=True)
+ if path.startswith("http"):
+ filename = modelloader.load_file_from_url(
+ url=path,
+ model_dir=self.model_download_path,
+ file_name=f"{self.model_name.replace(' ', '_')}.pth",
+ )
else:
filename = path
- if filename is None or not os.path.exists(filename):
- return None
if filename.endswith(".v2.pth"):
- model = net2(
- upscale=scale,
- in_chans=3,
- img_size=64,
- window_size=8,
- img_range=1.0,
- depths=[6, 6, 6, 6, 6, 6],
- embed_dim=180,
- num_heads=[6, 6, 6, 6, 6, 6],
- mlp_ratio=2,
- upsampler="nearest+conv",
- resi_connection="1conv",
+ model = Swin2SR(
+ upscale=scale,
+ in_chans=3,
+ img_size=64,
+ window_size=8,
+ img_range=1.0,
+ depths=[6, 6, 6, 6, 6, 6],
+ embed_dim=180,
+ num_heads=[6, 6, 6, 6, 6, 6],
+ mlp_ratio=2,
+ upsampler="nearest+conv",
+ resi_connection="1conv",
)
params = None
else:
- model = net(
+ model = SwinIR(
upscale=scale,
in_chans=3,
img_size=64,
diff --git a/extensions-builtin/canvas-zoom-and-pan/javascript/zoom.js b/extensions-builtin/canvas-zoom-and-pan/javascript/zoom.js
index 5ebd2073..30199dcd 100644
--- a/extensions-builtin/canvas-zoom-and-pan/javascript/zoom.js
+++ b/extensions-builtin/canvas-zoom-and-pan/javascript/zoom.js
@@ -200,7 +200,8 @@ onUiLoaded(async() => {
canvas_hotkey_move: "KeyF",
canvas_hotkey_overlap: "KeyO",
canvas_disabled_functions: [],
- canvas_show_tooltip: true
+ canvas_show_tooltip: true,
+ canvas_blur_prompt: false
};
const functionMap = {
@@ -608,6 +609,19 @@ onUiLoaded(async() => {
// Handle keydown events
function handleKeyDown(event) {
+ // Disable key locks to make pasting from the buffer work correctly
+ if ((event.ctrlKey && event.code === 'KeyV') || (event.ctrlKey && event.code === 'KeyC') || event.code === "F5") {
+ return;
+ }
+
+ // before activating shortcut, ensure user is not actively typing in an input field
+ if (!hotkeysConfig.canvas_blur_prompt) {
+ if (event.target.nodeName === 'TEXTAREA' || event.target.nodeName === 'INPUT') {
+ return;
+ }
+ }
+
+
const hotkeyActions = {
[hotkeysConfig.canvas_hotkey_reset]: resetZoom,
[hotkeysConfig.canvas_hotkey_overlap]: toggleOverlap,
@@ -686,6 +700,20 @@ onUiLoaded(async() => {
// Handle the move event for pan functionality. Updates the panX and panY variables and applies the new transform to the target element.
function handleMoveKeyDown(e) {
+
+ // Disable key locks to make pasting from the buffer work correctly
+ if ((e.ctrlKey && e.code === 'KeyV') || (e.ctrlKey && event.code === 'KeyC') || e.code === "F5") {
+ return;
+ }
+
+ // before activating shortcut, ensure user is not actively typing in an input field
+ if (!hotkeysConfig.canvas_blur_prompt) {
+ if (e.target.nodeName === 'TEXTAREA' || e.target.nodeName === 'INPUT') {
+ return;
+ }
+ }
+
+
if (e.code === hotkeysConfig.canvas_hotkey_move) {
if (!e.ctrlKey && !e.metaKey && isKeyDownHandlerAttached) {
e.preventDefault();
diff --git a/extensions-builtin/canvas-zoom-and-pan/scripts/hotkey_config.py b/extensions-builtin/canvas-zoom-and-pan/scripts/hotkey_config.py
index 1b6683aa..380176ce 100644
--- a/extensions-builtin/canvas-zoom-and-pan/scripts/hotkey_config.py
+++ b/extensions-builtin/canvas-zoom-and-pan/scripts/hotkey_config.py
@@ -9,5 +9,6 @@ shared.options_templates.update(shared.options_section(('canvas_hotkey', "Canvas
"canvas_hotkey_reset": shared.OptionInfo("R", "Reset zoom and canvas positon"),
"canvas_hotkey_overlap": shared.OptionInfo("O", "Toggle overlap").info("Technical button, neededs for testing"),
"canvas_show_tooltip": shared.OptionInfo(True, "Enable tooltip on the canvas"),
+ "canvas_blur_prompt": shared.OptionInfo(False, "Take the focus off the prompt when working with a canvas"),
"canvas_disabled_functions": shared.OptionInfo(["Overlap"], "Disable function that you don't use", gr.CheckboxGroup, {"choices": ["Zoom","Adjust brush size", "Moving canvas","Fullscreen","Reset Zoom","Overlap"]}),
}))
diff --git a/javascript/extensions.js b/javascript/extensions.js
index efeaf3a5..1f7254c5 100644
--- a/javascript/extensions.js
+++ b/javascript/extensions.js
@@ -72,3 +72,21 @@ function config_state_confirm_restore(_, config_state_name, config_restore_type)
}
return [confirmed, config_state_name, config_restore_type];
}
+
+function toggle_all_extensions(event) {
+ gradioApp().querySelectorAll('#extensions .extension_toggle').forEach(function(checkbox_el) {
+ checkbox_el.checked = event.target.checked;
+ });
+}
+
+function toggle_extension() {
+ let all_extensions_toggled = true;
+ for (const checkbox_el of gradioApp().querySelectorAll('#extensions .extension_toggle')) {
+ if (!checkbox_el.checked) {
+ all_extensions_toggled = false;
+ break;
+ }
+ }
+
+ gradioApp().querySelector('#extensions .all_extensions_toggle').checked = all_extensions_toggled;
+}
diff --git a/modules/api/api.py b/modules/api/api.py
index 2e49526e..224bbfc6 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -14,7 +14,7 @@ from fastapi.encoders import jsonable_encoder
from secrets import compare_digest
import modules.shared as shared
-from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing, errors
+from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing, errors, restart
from modules.api import models
from modules.shared import opts
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
@@ -22,7 +22,7 @@ from modules.textual_inversion.textual_inversion import create_embedding, train_
from modules.textual_inversion.preprocess import preprocess
from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork
from PIL import PngImagePlugin,Image
-from modules.sd_models import checkpoints_list, unload_model_weights, reload_model_weights
+from modules.sd_models import checkpoints_list, unload_model_weights, reload_model_weights, checkpoint_alisases
from modules.sd_vae import vae_dict
from modules.sd_models_config import find_checkpoint_config_near_filename
from modules.realesrgan_model import get_realesrgan_models
@@ -30,13 +30,7 @@ from modules import devices
from typing import Dict, List, Any
import piexif
import piexif.helper
-
-
-def upscaler_to_index(name: str):
- try:
- return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
- except Exception as e:
- raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in shared.sd_upscalers])}") from e
+from contextlib import closing
def script_name_to_index(name, scripts):
@@ -84,6 +78,8 @@ def encode_pil_to_base64(image):
image.save(output_bytes, format="PNG", pnginfo=(metadata if use_metadata else None), quality=opts.jpeg_quality)
elif opts.samples_format.lower() in ("jpg", "jpeg", "webp"):
+ if image.mode == "RGBA":
+ image = image.convert("RGB")
parameters = image.info.get('parameters', None)
exif_bytes = piexif.dump({
"Exif": { piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(parameters or "", encoding="unicode") }
@@ -209,6 +205,11 @@ class Api:
self.add_api_route("/sdapi/v1/scripts", self.get_scripts_list, methods=["GET"], response_model=models.ScriptsList)
self.add_api_route("/sdapi/v1/script-info", self.get_script_info, methods=["GET"], response_model=List[models.ScriptInfo])
+ if shared.cmd_opts.api_server_stop:
+ self.add_api_route("/sdapi/v1/server-kill", self.kill_webui, methods=["POST"])
+ self.add_api_route("/sdapi/v1/server-restart", self.restart_webui, methods=["POST"])
+ self.add_api_route("/sdapi/v1/server-stop", self.stop_webui, methods=["POST"])
+
self.default_script_arg_txt2img = []
self.default_script_arg_img2img = []
@@ -324,19 +325,19 @@ class Api:
args.pop('save_images', None)
with self.queue_lock:
- p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)
- p.scripts = script_runner
- p.outpath_grids = opts.outdir_txt2img_grids
- p.outpath_samples = opts.outdir_txt2img_samples
-
- shared.state.begin()
- if selectable_scripts is not None:
- p.script_args = script_args
- processed = scripts.scripts_txt2img.run(p, *p.script_args) # Need to pass args as list here
- else:
- p.script_args = tuple(script_args) # Need to pass args as tuple here
- processed = process_images(p)
- shared.state.end()
+ with closing(StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)) as p:
+ p.scripts = script_runner
+ p.outpath_grids = opts.outdir_txt2img_grids
+ p.outpath_samples = opts.outdir_txt2img_samples
+
+ shared.state.begin(job="scripts_txt2img")
+ if selectable_scripts is not None:
+ p.script_args = script_args
+ processed = scripts.scripts_txt2img.run(p, *p.script_args) # Need to pass args as list here
+ else:
+ p.script_args = tuple(script_args) # Need to pass args as tuple here
+ processed = process_images(p)
+ shared.state.end()
b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else []
@@ -380,20 +381,20 @@ class Api:
args.pop('save_images', None)
with self.queue_lock:
- p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)
- p.init_images = [decode_base64_to_image(x) for x in init_images]
- p.scripts = script_runner
- p.outpath_grids = opts.outdir_img2img_grids
- p.outpath_samples = opts.outdir_img2img_samples
-
- shared.state.begin()
- if selectable_scripts is not None:
- p.script_args = script_args
- processed = scripts.scripts_img2img.run(p, *p.script_args) # Need to pass args as list here
- else:
- p.script_args = tuple(script_args) # Need to pass args as tuple here
- processed = process_images(p)
- shared.state.end()
+ with closing(StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)) as p:
+ p.init_images = [decode_base64_to_image(x) for x in init_images]
+ p.scripts = script_runner
+ p.outpath_grids = opts.outdir_img2img_grids
+ p.outpath_samples = opts.outdir_img2img_samples
+
+ shared.state.begin(job="scripts_img2img")
+ if selectable_scripts is not None:
+ p.script_args = script_args
+ processed = scripts.scripts_img2img.run(p, *p.script_args) # Need to pass args as list here
+ else:
+ p.script_args = tuple(script_args) # Need to pass args as tuple here
+ processed = process_images(p)
+ shared.state.end()
b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else []
@@ -517,6 +518,10 @@ class Api:
return options
def set_config(self, req: Dict[str, Any]):
+ checkpoint_name = req.get("sd_model_checkpoint", None)
+ if checkpoint_name is not None and checkpoint_name not in checkpoint_alisases:
+ raise RuntimeError(f"model {checkpoint_name!r} not found")
+
for k, v in req.items():
shared.opts.set(k, v)
@@ -597,44 +602,42 @@ class Api:
def create_embedding(self, args: dict):
try:
- shared.state.begin()
+ shared.state.begin(job="create_embedding")
filename = create_embedding(**args) # create empty embedding
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() # reload embeddings so new one can be immediately used
- shared.state.end()
return models.CreateResponse(info=f"create embedding filename: {filename}")
except AssertionError as e:
- shared.state.end()
return models.TrainResponse(info=f"create embedding error: {e}")
+ finally:
+ shared.state.end()
+
def create_hypernetwork(self, args: dict):
try:
- shared.state.begin()
+ shared.state.begin(job="create_hypernetwork")
filename = create_hypernetwork(**args) # create empty embedding
- shared.state.end()
return models.CreateResponse(info=f"create hypernetwork filename: {filename}")
except AssertionError as e:
- shared.state.end()
return models.TrainResponse(info=f"create hypernetwork error: {e}")
+ finally:
+ shared.state.end()
def preprocess(self, args: dict):
try:
- shared.state.begin()
+ shared.state.begin(job="preprocess")
preprocess(**args) # quick operation unless blip/booru interrogation is enabled
shared.state.end()
- return models.PreprocessResponse(info = 'preprocess complete')
+ return models.PreprocessResponse(info='preprocess complete')
except KeyError as e:
- shared.state.end()
return models.PreprocessResponse(info=f"preprocess error: invalid token: {e}")
- except AssertionError as e:
- shared.state.end()
+ except Exception as e:
return models.PreprocessResponse(info=f"preprocess error: {e}")
- except FileNotFoundError as e:
+ finally:
shared.state.end()
- return models.PreprocessResponse(info=f'preprocess error: {e}')
def train_embedding(self, args: dict):
try:
- shared.state.begin()
+ shared.state.begin(job="train_embedding")
apply_optimizations = shared.opts.training_xattention_optimizations
error = None
filename = ''
@@ -647,15 +650,15 @@ class Api:
finally:
if not apply_optimizations:
sd_hijack.apply_optimizations()
- shared.state.end()
return models.TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}")
- except AssertionError as msg:
- shared.state.end()
+ except Exception as msg:
return models.TrainResponse(info=f"train embedding error: {msg}")
+ finally:
+ shared.state.end()
def train_hypernetwork(self, args: dict):
try:
- shared.state.begin()
+ shared.state.begin(job="train_hypernetwork")
shared.loaded_hypernetworks = []
apply_optimizations = shared.opts.training_xattention_optimizations
error = None
@@ -673,9 +676,10 @@ class Api:
sd_hijack.apply_optimizations()
shared.state.end()
return models.TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}")
- except AssertionError:
+ except Exception as exc:
+ return models.TrainResponse(info=f"train embedding error: {exc}")
+ finally:
shared.state.end()
- return models.TrainResponse(info=f"train embedding error: {error}")
def get_memory(self):
try:
@@ -715,3 +719,15 @@ class Api:
def launch(self, server_name, port):
self.app.include_router(self.router)
uvicorn.run(self.app, host=server_name, port=port, timeout_keep_alive=0)
+
+ def kill_webui(self):
+ restart.stop_program()
+
+ def restart_webui(self):
+ if restart.is_restartable():
+ restart.restart_program()
+ return Response(status_code=501)
+
+ def stop_webui(request):
+ shared.state.server_command = "stop"