aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--html/licenses.html219
-rw-r--r--javascript/extraNetworks.js2
-rw-r--r--javascript/hints.js1
-rw-r--r--javascript/progressbar.js2
-rw-r--r--launch.py16
-rw-r--r--modules/api/api.py45
-rw-r--r--modules/api/models.py28
-rw-r--r--modules/generation_parameters_copypaste.py8
-rw-r--r--modules/images.py2
-rw-r--r--modules/modelloader.py8
-rw-r--r--modules/models/diffusion/uni_pc/__init__.py1
-rw-r--r--modules/models/diffusion/uni_pc/sampler.py100
-rw-r--r--modules/models/diffusion/uni_pc/uni_pc.py856
-rw-r--r--modules/processing.py7
-rw-r--r--modules/scripts.py23
-rw-r--r--modules/sd_hijack.py12
-rw-r--r--modules/sd_hijack_optimizations.py70
-rw-r--r--modules/sd_samplers.py2
-rw-r--r--modules/sd_samplers_compvis.py59
-rw-r--r--modules/shared.py17
-rw-r--r--scripts/xyz_grid.py134
-rw-r--r--style.css2
-rw-r--r--test/basic_features/txt2img_test.py2
-rw-r--r--webui.py4
24 files changed, 1529 insertions, 91 deletions
diff --git a/html/licenses.html b/html/licenses.html
index 570630eb..bddbf466 100644
--- a/html/licenses.html
+++ b/html/licenses.html
@@ -417,3 +417,222 @@ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
</pre>
+<h2><a href="https://github.com/huggingface/diffusers/blob/c7da8fd23359a22d0df2741688b5b4f33c26df21/LICENSE">Scaled Dot Product Attention</a></h2>
+<small>Some small amounts of code borrowed and reworked.</small>
+<pre>
+ Copyright 2023 The HuggingFace Team. All rights reserved.
+
+ Licensed under the Apache License, Version 2.0 (the "License");
+ you may not use this file except in compliance with the License.
+ You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+ Unless required by applicable law or agreed to in writing, software
+ distributed under the License is distributed on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ See the License for the specific language governing permissions and
+ limitations under the License.
+
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+ 1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+ 2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+ 3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+ 4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+ 6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+ 7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+ 8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+ 9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+ END OF TERMS AND CONDITIONS
+
+ APPENDIX: How to apply the Apache License to your work.
+
+ To apply the Apache License to your work, attach the following
+ boilerplate notice, with the fields enclosed by brackets "[]"
+ replaced with your own identifying information. (Don't include
+ the brackets!) The text should be enclosed in the appropriate
+ comment syntax for the file format. We also recommend that a
+ file or class name and description of purpose be included on the
+ same "printed page" as the copyright notice for easier
+ identification within third-party archives.
+
+ Copyright [yyyy] [name of copyright owner]
+
+ Licensed under the Apache License, Version 2.0 (the "License");
+ you may not use this file except in compliance with the License.
+ You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+ Unless required by applicable law or agreed to in writing, software
+ distributed under the License is distributed on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ See the License for the specific language governing permissions and
+ limitations under the License.
+</pre> \ No newline at end of file
diff --git a/javascript/extraNetworks.js b/javascript/extraNetworks.js
index 17bf2000..5781df4f 100644
--- a/javascript/extraNetworks.js
+++ b/javascript/extraNetworks.js
@@ -78,7 +78,7 @@ function cardClicked(tabname, textToAdd, allowNegativePrompt){
var textarea = allowNegativePrompt ? activePromptTextarea[tabname] : gradioApp().querySelector("#" + tabname + "_prompt > label > textarea")
if(! tryToRemoveExtraNetworkFromPrompt(textarea, textToAdd)){
- textarea.value = textarea.value + " " + textToAdd
+ textarea.value = textarea.value + opts.extra_networks_add_text_separator + textToAdd
}
updateInput(textarea)
diff --git a/javascript/hints.js b/javascript/hints.js
index f1199009..7f4101b2 100644
--- a/javascript/hints.js
+++ b/javascript/hints.js
@@ -6,6 +6,7 @@ titles = {
"GFPGAN": "Restore low quality faces using GFPGAN neural network",
"Euler a": "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps higher than 30-40 does not help",
"DDIM": "Denoising Diffusion Implicit Models - best at inpainting",
+ "UniPC": "Unified Predictor-Corrector Framework for Fast Sampling of Diffusion Models",
"DPM adaptive": "Ignores step count - uses a number of steps determined by the CFG and resolution",
"Batch count": "How many batches of images to create (has no impact on generation performance or VRAM usage)",
diff --git a/javascript/progressbar.js b/javascript/progressbar.js
index ff6d757b..9ccc9da4 100644
--- a/javascript/progressbar.js
+++ b/javascript/progressbar.js
@@ -139,7 +139,7 @@ function requestProgress(id_task, progressbarContainer, gallery, atEnd, onProgre
var divProgress = document.createElement('div')
divProgress.className='progressDiv'
- divProgress.style.display = opts.show_progressbar ? "" : "none"
+ divProgress.style.display = opts.show_progressbar ? "block" : "none"
var divInner = document.createElement('div')
divInner.className='progress'
diff --git a/launch.py b/launch.py
index a68bb3a9..0868f8a9 100644
--- a/launch.py
+++ b/launch.py
@@ -161,7 +161,17 @@ def git_clone(url, dir, name, commithash=None):
if commithash is not None:
run(f'"{git}" -C "{dir}" checkout {commithash}', None, "Couldn't checkout {name}'s hash: {commithash}")
-
+
+def git_pull_recursive(dir):
+ for subdir, _, _ in os.walk(dir):
+ if os.path.exists(os.path.join(subdir, '.git')):
+ try:
+ output = subprocess.check_output([git, '-C', subdir, 'pull', '--autostash'])
+ print(f"Pulled changes for repository in '{subdir}':\n{output.decode('utf-8').strip()}\n")
+ except subprocess.CalledProcessError as e:
+ print(f"Couldn't perform 'git pull' on repository in '{subdir}':\n{e.output.decode('utf-8').strip()}\n")
+
+
def version_check(commit):
try:
import requests
@@ -247,6 +257,7 @@ def prepare_environment():
args, _ = parser.parse_known_args(sys.argv)
sys.argv, _ = extract_arg(sys.argv, '-f')
+ sys.argv, update_all_extensions = extract_arg(sys.argv, '--update-all-extensions')
sys.argv, skip_torch_cuda_test = extract_arg(sys.argv, '--skip-torch-cuda-test')
sys.argv, skip_python_version_check = extract_arg(sys.argv, '--skip-python-version-check')
sys.argv, reinstall_xformers = extract_arg(sys.argv, '--reinstall-xformers')
@@ -312,6 +323,9 @@ def prepare_environment():
if update_check:
version_check(commit)
+
+ if update_all_extensions:
+ git_pull_recursive(dir_extensions)
if "--exit" in sys.argv:
print("Exiting because of --exit argument")
diff --git a/modules/api/api.py b/modules/api/api.py
index 5a9ac5f1..376f7f04 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -150,6 +150,7 @@ class Api:
self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=TrainResponse)
self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=TrainResponse)
self.add_api_route("/sdapi/v1/memory", self.get_memory, methods=["GET"], response_model=MemoryResponse)
+ self.add_api_route("/sdapi/v1/scripts", self.get_scripts_list, methods=["GET"], response_model=ScriptsList)
def add_api_route(self, path: str, endpoint, **kwargs):
if shared.cmd_opts.api_auth:
@@ -174,36 +175,44 @@ class Api:
script_idx = script_name_to_index(script_name, script_runner.selectable_scripts)
script = script_runner.selectable_scripts[script_idx]
return script, script_idx
+
+ def get_scripts_list(self):
+ t2ilist = [str(title.lower()) for title in scripts.scripts_txt2img.titles]
+ i2ilist = [str(title.lower()) for title in scripts.scripts_img2img.titles]
+
+ return ScriptsList(txt2img = t2ilist, img2img = i2ilist)
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
script, script_idx = self.get_script(txt2imgreq.script_name, scripts.scripts_txt2img)
- populate = txt2imgreq.copy(update={ # Override __init__ params
+ populate = txt2imgreq.copy(update={ # Override __init__ params
"sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index),
- "do_not_save_samples": True,
- "do_not_save_grid": True
- }
- )
+ "do_not_save_samples": not txt2imgreq.save_images,
+ "do_not_save_grid": not txt2imgreq.save_images,
+ })
if populate.sampler_name:
populate.sampler_index = None # prevent a warning later on
args = vars(populate)
args.pop('script_name', None)
+ send_images = args.pop('send_images', True)
+ args.pop('save_images', None)
+
with self.queue_lock:
p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)
+ p.outpath_grids = opts.outdir_txt2img_grids
+ p.outpath_samples = opts.outdir_txt2img_samples
shared.state.begin()
if script is not None:
- p.outpath_grids = opts.outdir_txt2img_grids
- p.outpath_samples = opts.outdir_txt2img_samples
p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args
processed = scripts.scripts_txt2img.run(p, *p.script_args)
else:
processed = process_images(p)
shared.state.end()
- b64images = list(map(encode_pil_to_base64, processed.images))
+ b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else []
return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
@@ -218,13 +227,12 @@ class Api:
if mask:
mask = decode_base64_to_image(mask)
- populate = img2imgreq.copy(update={ # Override __init__ params
+ populate = img2imgreq.copy(update={ # Override __init__ params
"sampler_name": validate_sampler_name(img2imgreq.sampler_name or img2imgreq.sampler_index),
- "do_not_save_samples": True,
- "do_not_save_grid": True,
- "mask": mask
- }
- )
+ "do_not_save_samples": not img2imgreq.save_images,
+ "do_not_save_grid": not img2imgreq.save_images,
+ "mask": mask,
+ })
if populate.sampler_name:
populate.sampler_index = None # prevent a warning later on
@@ -232,21 +240,24 @@ class Api:
args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine.
args.pop('script_name', None)
+ send_images = args.pop('send_images', True)
+ args.pop('save_images', None)
+
with self.queue_lock:
p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)
p.init_images = [decode_base64_to_image(x) for x in init_images]
+ p.outpath_grids = opts.outdir_img2img_grids
+ p.outpath_samples = opts.outdir_img2img_samples
shared.state.begin()
if script is not None:
- p.outpath_grids = opts.outdir_img2img_grids
- p.outpath_samples = opts.outdir_img2img_samples
p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args
processed = scripts.scripts_img2img.run(p, *p.script_args)
else:
processed = process_images(p)
shared.state.end()
- b64images = list(map(encode_pil_to_base64, processed.images))
+ b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else []
if not img2imgreq.include_init_images:
img2imgreq.init_images = None
diff --git a/modules/api/models.py b/modules/api/models.py
index cba43d3b..fa1c40df 100644
--- a/modules/api/models.py
+++ b/modules/api/models.py
@@ -14,8 +14,8 @@ API_NOT_ALLOWED = [
"outpath_samples",
"outpath_grids",
"sampler_index",
- "do_not_save_samples",
- "do_not_save_grid",
+ # "do_not_save_samples",
+ # "do_not_save_grid",
"extra_generation_params",
"overlay_images",
"do_not_reload_embeddings",
@@ -100,13 +100,29 @@ class PydanticModelGenerator:
StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator(
"StableDiffusionProcessingTxt2Img",
StableDiffusionProcessingTxt2Img,
- [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}]
+ [
+ {"key": "sampler_index", "type": str, "default": "Euler"},
+ {"key": "script_name", "type": str, "default": None},
+ {"key": "script_args", "type": list, "default": []},
+ {"key": "send_images", "type": bool, "default": True},
+ {"key": "save_images", "type": bool, "default": False},
+ ]
).generate_model()
StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
"StableDiffusionProcessingImg2Img",
StableDiffusionProcessingImg2Img,
- [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}]
+ [
+ {"key": "sampler_index", "type": str, "default": "Euler"},
+ {"key": "init_images", "type": list, "default": None},
+ {"key": "denoising_strength", "type": float, "default": 0.75},
+ {"key": "mask", "type": str, "default": None},
+ {"key": "include_init_images", "type": bool, "default": False, "exclude" : True},
+ {"key": "script_name", "type": str, "default": None},
+ {"key": "script_args", "type": list, "default": []},
+ {"key": "send_images", "type": bool, "default": True},
+ {"key": "save_images", "type": bool, "default": False},
+ ]
).generate_model()
class TextToImageResponse(BaseModel):
@@ -267,3 +283,7 @@ class EmbeddingsResponse(BaseModel):
class MemoryResponse(BaseModel):
ram: dict = Field(title="RAM", description="System memory stats")
cuda: dict = Field(title="CUDA", description="nVidia CUDA memory stats")
+
+class ScriptsList(BaseModel):
+ txt2img: list = Field(default=None,title="Txt2img", description="Titles of scripts (txt2img)")
+ img2img: list = Field(default=None,title="Img2img", description="Titles of scripts (img2img)") \ No newline at end of file
diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py
index 89dc23bf..cb367655 100644
--- a/modules/generation_parameters_copypaste.py
+++ b/modules/generation_parameters_copypaste.py
@@ -288,6 +288,8 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
settings_map = {}
+
+
infotext_to_setting_name_mapping = [
('Clip skip', 'CLIP_stop_at_last_layers', ),
('Conditional mask weight', 'inpainting_mask_weight'),
@@ -296,7 +298,11 @@ infotext_to_setting_name_mapping = [
('Noise multiplier', 'initial_noise_multiplier'),
('Eta', 'eta_ancestral'),
('Eta DDIM', 'eta_ddim'),
- ('Discard penultimate sigma', 'always_discard_next_to_last_sigma')
+ ('Discard penultimate sigma', 'always_discard_next_to_last_sigma'),
+ ('UniPC variant', 'uni_pc_variant'),
+ ('UniPC skip type', 'uni_pc_skip_type'),
+ ('UniPC order', 'uni_pc_order'),
+ ('UniPC lower order final', 'uni_pc_lower_order_final'),
]
diff --git a/modules/images.py b/modules/images.py
index 5b80c23e..7df2b08c 100644
--- a/modules/images.py
+++ b/modules/images.py
@@ -556,7 +556,7 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
elif image_to_save.mode == 'I;16':
image_to_save = image_to_save.point(lambda p: p * 0.0038910505836576).convert("RGB" if extension.lower() == ".webp" else "L")
- image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality)
+ image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality, lossless=opts.webp_lossless)
if opts.enable_pnginfo and info is not None:
exif_bytes = piexif.dump({
diff --git a/modules/modelloader.py b/modules/modelloader.py
index fc3f6249..e351d808 100644
--- a/modules/modelloader.py
+++ b/modules/modelloader.py
@@ -6,7 +6,7 @@ from urllib.parse import urlparse
from basicsr.utils.download_util import load_file_from_url
from modules import shared
-from modules.upscaler import Upscaler
+from modules.upscaler import Upscaler, UpscalerLanczos, UpscalerNearest, UpscalerNone
from modules.paths import script_path, models_path
@@ -169,4 +169,8 @@ def load_upscalers():
scaler = cls(commandline_options.get(cmd_name, None))
datas += scaler.scalers
- shared.sd_upscalers = datas
+ shared.sd_upscalers = sorted(
+ datas,
+ # Special case for UpscalerNone keeps it at the beginning of the list.
+ key=lambda x: x.name.lower() if not isinstance(x.scaler, (UpscalerNone, UpscalerLanczos, UpscalerNearest)) else ""
+ )
diff --git a/modules/models/diffusion/uni_pc/__init__.py b/modules/models/diffusion/uni_pc/__init__.py
new file mode 100644
index 00000000..e1265e3f
--- /dev/null
+++ b/modules/models/diffusion/uni_pc/__init__.py
@@ -0,0 +1 @@
+from .sampler import UniPCSampler
diff --git a/modules/models/diffusion/uni_pc/sampler.py b/modules/models/diffusion/uni_pc/sampler.py
new file mode 100644
index 00000000..bf346ff4
--- /dev/null
+++ b/modules/models/diffusion/uni_pc/sampler.py
@@ -0,0 +1,100 @@
+"""SAMPLING ONLY."""
+
+import torch
+
+from .uni_pc import NoiseScheduleVP, model_wrapper, UniPC
+from modules import shared, devices
+
+
+class UniPCSampler(object):
+ def __init__(self, model, **kwargs):
+ super().__init__()
+ self.model = model
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device)
+ self.before_sample = None
+ self.after_sample = None
+ self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod))
+
+ def register_buffer(self, name, attr):
+ if type(attr) == torch.Tensor:
+ if attr.device != devices.device:
+ attr = attr.to(devices.device)
+ setattr(self, name, attr)
+
+ def set_hooks(self, before_sample, after_sample, after_update):
+ self.before_sample = before_sample
+ self.after_sample = after_sample
+ self.after_update = after_update
+
+ @torch.no_grad()
+ def sample(self,
+ S,
+ batch_size,
+ shape,
+ conditioning=None,
+ callback=None,
+ normals_sequence=None,
+ img_callback=None,
+ quantize_x0=False,
+ eta=0.,
+ mask=None,
+ x0=None,
+ temperature=1.,
+ noise_dropout=0.,
+ score_corrector=None,
+ corrector_kwargs=None,
+ verbose=True,
+ x_T=None,
+ log_every_t=100,
+ unconditional_guidance_scale=1.,
+ unconditional_conditioning=None,
+ # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
+ **kwargs
+ ):
+ if conditioning is not None:
+ if isinstance(conditioning, dict):
+ ctmp = conditioning[list(conditioning.keys())[0]]
+ while isinstance(ctmp, list): ctmp = ctmp[0]
+ cbs = ctmp.shape[0]
+ if cbs != batch_size:
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
+
+ elif isinstance(conditioning, list):
+ for ctmp in conditioning:
+ if ctmp.shape[0] != batch_size:
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
+
+ else:
+ if conditioning.shape[0] != batch_size:
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
+
+ # sampling
+ C, H, W = shape
+ size = (batch_size, C, H, W)
+ print(f'Data shape for UniPC sampling is {size}')
+
+ device = self.model.betas.device
+ if x_T is None:
+ img = torch.randn(size, device=device)
+ else:
+ img = x_T
+
+ ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)
+
+ # SD 1.X is "noise", SD 2.X is "v"
+ model_type = "v" if self.model.parameterization == "v" else "noise"
+
+ model_fn = model_wrapper(
+ lambda x, t, c: self.model.apply_model(x, t, c),
+ ns,
+ model_type=model_type,
+ guidance_type="classifier-free",
+ #condition=conditioning,
+ #unconditional_condition=unconditional_conditioning,
+ guidance_scale=unconditional_guidance_scale,
+ )
+
+ uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, variant=shared.opts.uni_pc_variant, condition=conditioning, unconditional_condition=unconditional_conditioning, before_sample=self.before_sample, after_sample=self.after_sample, after_update=self.after_update)
+ x = uni_pc.sample(img, steps=S, skip_type=shared.opts.uni_pc_skip_type, method="multistep", order=shared.opts.uni_pc_order, lower_order_final=shared.opts.uni_pc_lower_order_final)
+
+ return x.to(device), None
diff --git a/modules/models/diffusion/uni_pc/uni_pc.py b/modules/models/diffusion/uni_pc/uni_pc.py
new file mode 100644
index 00000000..df63d1bc
--- /dev/null
+++ b/modules/models/diffusion/uni_pc/uni_pc.py
@@ -0,0 +1,856 @@
+import torch
+import torch.nn.functional as F
+import math
+