aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--javascript/progressbar.js15
-rw-r--r--launch.py11
-rw-r--r--modules/processing.py16
-rw-r--r--modules/prompt_parser.py116
-rw-r--r--modules/sd_samplers.py100
-rw-r--r--modules/shared.py18
-rw-r--r--modules/textual_inversion/preprocess.py29
-rw-r--r--modules/ui.py7
-rw-r--r--scripts/img2imgalt.py3
-rw-r--r--scripts/outpainting_mk_2.py5
-rw-r--r--scripts/xy_grid.py8
-rw-r--r--webui.py7
12 files changed, 273 insertions, 62 deletions
diff --git a/javascript/progressbar.js b/javascript/progressbar.js
index 1e297abb..f9e9290e 100644
--- a/javascript/progressbar.js
+++ b/javascript/progressbar.js
@@ -4,6 +4,21 @@ global_progressbars = {}
function check_progressbar(id_part, id_progressbar, id_progressbar_span, id_interrupt, id_preview, id_gallery){
var progressbar = gradioApp().getElementById(id_progressbar)
var interrupt = gradioApp().getElementById(id_interrupt)
+
+ if(opts.show_progress_in_title && progressbar && progressbar.offsetParent){
+ if(progressbar.innerText){
+ let newtitle = 'Stable Diffusion - ' + progressbar.innerText
+ if(document.title != newtitle){
+ document.title = newtitle;
+ }
+ }else{
+ let newtitle = 'Stable Diffusion'
+ if(document.title != newtitle){
+ document.title = newtitle;
+ }
+ }
+ }
+
if(progressbar!= null && progressbar != global_progressbars[id_progressbar]){
global_progressbars[id_progressbar] = progressbar
diff --git a/launch.py b/launch.py
index 57405fea..75edb66a 100644
--- a/launch.py
+++ b/launch.py
@@ -19,7 +19,7 @@ clip_package = os.environ.get('CLIP_PACKAGE', "git+https://github.com/openai/CLI
stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "69ae4b35e0a0f6ee1af8bb9a5d0016ccb27e36dc")
taming_transformers_commit_hash = os.environ.get('TAMING_TRANSFORMERS_COMMIT_HASH', "24268930bf1dce879235a7fddd0b2355b84d7ea6")
-k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "a7ec1974d4ccb394c2dca275f42cd97490618924")
+k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "f4e99857772fc3a126ba886aadf795a332774878")
codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af")
blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9")
@@ -86,6 +86,15 @@ def git_clone(url, dir, name, commithash=None):
# TODO clone into temporary dir and move if successful
if os.path.exists(dir):
+ if commithash is None:
+ return
+
+ current_hash = run(f'"{git}" -C {dir} rev-parse HEAD', None, f"Couldn't determine {name}'s hash: {commithash}").strip()
+ if current_hash == commithash:
+ return
+
+ run(f'"{git}" -C {dir} fetch', f"Fetching updates for {name}...", f"Couldn't fetch {name}")
+ run(f'"{git}" -C {dir} checkout {commithash}', f"Checking out commint for {name} with hash: {commithash}...", f"Couldn't checkout commit {commithash} for {name}")
return
run(f'"{git}" clone "{url}" "{dir}"', f"Cloning {name} into {dir}...", f"Couldn't clone {name}")
diff --git a/modules/processing.py b/modules/processing.py
index f666ba81..de818d5b 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -11,9 +11,8 @@ import cv2
from skimage import exposure
import modules.sd_hijack
-from modules import devices, prompt_parser, masking, lowvram
+from modules import devices, prompt_parser, masking, sd_samplers, lowvram
from modules.sd_hijack import model_hijack
-from modules.sd_samplers import samplers, samplers_for_img2img
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
import modules.face_restoration
@@ -110,7 +109,7 @@ class Processed:
self.width = p.width
self.height = p.height
self.sampler_index = p.sampler_index
- self.sampler = samplers[p.sampler_index].name
+ self.sampler = sd_samplers.samplers[p.sampler_index].name
self.cfg_scale = p.cfg_scale
self.steps = p.steps
self.batch_size = p.batch_size
@@ -265,7 +264,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
generation_params = {
"Steps": p.steps,
- "Sampler": samplers[p.sampler_index].name,
+ "Sampler": sd_samplers.samplers[p.sampler_index].name,
"CFG scale": p.cfg_scale,
"Seed": all_seeds[index],
"Face restoration": (opts.face_restoration_model if p.restore_faces else None),
@@ -360,7 +359,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
#c = p.sd_model.get_learned_conditioning(prompts)
with devices.autocast():
uc = prompt_parser.get_learned_conditioning(shared.sd_model, len(prompts) * [p.negative_prompt], p.steps)
- c = prompt_parser.get_learned_conditioning(shared.sd_model, prompts, p.steps)
+ c = prompt_parser.get_multicond_learned_conditioning(shared.sd_model, prompts, p.steps)
if len(model_hijack.comments) > 0:
for comment in model_hijack.comments:
@@ -489,7 +488,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
self.firstphase_height_truncated = int(scale * self.height)
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
- self.sampler = samplers[self.sampler_index].constructor(self.sd_model)
+ self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
if not self.enable_hr:
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
@@ -532,7 +531,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
shared.state.nextjob()
- self.sampler = samplers[self.sampler_index].constructor(self.sd_model)
+ self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
+
noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
# GC now before running the next img2img to prevent running out of memory
@@ -567,7 +567,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.nmask = None
def init(self, all_prompts, all_seeds, all_subseeds):
- self.sampler = samplers_for_img2img[self.sampler_index].constructor(self.sd_model)
+ self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers_for_img2img, self.sampler_index, self.sd_model)
crop_region = None
if self.image_mask is not None:
diff --git a/modules/prompt_parser.py b/modules/prompt_parser.py
index a3b12421..f00256f2 100644
--- a/modules/prompt_parser.py
+++ b/modules/prompt_parser.py
@@ -1,6 +1,6 @@
import re
from collections import namedtuple
-
+from typing import List
import lark
# a prompt like this: "fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]"
@@ -97,10 +97,26 @@ def get_learned_conditioning_prompt_schedules(prompts, steps):
ScheduledPromptConditioning = namedtuple("ScheduledPromptConditioning", ["end_at_step", "cond"])
-ScheduledPromptBatch = namedtuple("ScheduledPromptBatch", ["shape", "schedules"])
def get_learned_conditioning(model, prompts, steps):
+ """converts a list of prompts into a list of prompt schedules - each schedule is a list of ScheduledPromptConditioning, specifying the comdition (cond),
+ and the sampling step at which this condition is to be replaced by the next one.
+
+ Input:
+ (model, ['a red crown', 'a [blue:green:5] jeweled crown'], 20)
+
+ Output:
+ [
+ [
+ ScheduledPromptConditioning(end_at_step=20, cond=tensor([[-0.3886, 0.0229, -0.0523, ..., -0.4901, -0.3066, 0.0674], ..., [ 0.3317, -0.5102, -0.4066, ..., 0.4119, -0.7647, -1.0160]], device='cuda:0'))
+ ],
+ [
+ ScheduledPromptConditioning(end_at_step=5, cond=tensor([[-0.3886, 0.0229, -0.0522, ..., -0.4901, -0.3067, 0.0673], ..., [-0.0192, 0.3867, -0.4644, ..., 0.1135, -0.3696, -0.4625]], device='cuda:0')),
+ ScheduledPromptConditioning(end_at_step=20, cond=tensor([[-0.3886, 0.0229, -0.0522, ..., -0.4901, -0.3067, 0.0673], ..., [-0.7352, -0.4356, -0.7888, ..., 0.6994, -0.4312, -1.2593]], device='cuda:0'))
+ ]
+ ]
+ """
res = []
prompt_schedules = get_learned_conditioning_prompt_schedules(prompts, steps)
@@ -123,13 +139,75 @@ def get_learned_conditioning(model, prompts, steps):
cache[prompt] = cond_schedule
res.append(cond_schedule)
- return ScheduledPromptBatch((len(prompts),) + res[0][0].cond.shape, res)
+ return res
+
+
+re_AND = re.compile(r"\bAND\b")
+re_weight = re.compile(r"^(.*?)(?:\s*:\s*([-+]?(?:\d+\.?|\d*\.\d+)))?\s*$")
+
+def get_multicond_prompt_list(prompts):
+ res_indexes = []
+
+ prompt_flat_list = []
+ prompt_indexes = {}
+
+ for prompt in prompts:
+ subprompts = re_AND.split(prompt)
+
+ indexes = []
+ for subprompt in subprompts:
+ match = re_weight.search(subprompt)
+
+ text, weight = match.groups() if match is not None else (subprompt, 1.0)
+
+ weight = float(weight) if weight is not None else 1.0
+
+ index = prompt_indexes.get(text, None)
+ if index is None:
+ index = len(prompt_flat_list)
+ prompt_flat_list.append(text)
+ prompt_indexes[text] = index
+
+ indexes.append((index, weight))
+
+ res_indexes.append(indexes)
+
+ return res_indexes, prompt_flat_list, prompt_indexes
+
+
+class ComposableScheduledPromptConditioning:
+ def __init__(self, schedules, weight=1.0):
+ self.schedules: List[ScheduledPromptConditioning] = schedules
+ self.weight: float = weight
+
+class MulticondLearnedConditioning:
+ def __init__(self, shape, batch):
+ self.shape: tuple = shape # the shape field is needed to send this object to DDIM/PLMS
+ self.batch: List[List[ComposableScheduledPromptConditioning]] = batch
-def reconstruct_cond_batch(c: ScheduledPromptBatch, current_step):
- param = c.schedules[0][0].cond
- res = torch.zeros(c.shape, device=param.device, dtype=param.dtype)
- for i, cond_schedule in enumerate(c.schedules):
+def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearnedConditioning:
+ """same as get_learned_conditioning, but returns a list of ScheduledPromptConditioning along with the weight objects for each prompt.
+ For each prompt, the list is obtained by splitting the prompt using the AND separator.
+
+ https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/
+ """
+
+ res_indexes, prompt_flat_list, prompt_indexes = get_multicond_prompt_list(prompts)
+
+ learned_conditioning = get_learned_conditioning(model, prompt_flat_list, steps)
+
+ res = []
+ for indexes in res_indexes:
+ res.append([ComposableScheduledPromptConditioning(learned_conditioning[i], weight) for i, weight in indexes])
+
+ return MulticondLearnedConditioning(shape=(len(prompts),), batch=res)
+
+
+def reconstruct_cond_batch(c: List[List[ScheduledPromptConditioning]], current_step):
+ param = c[0][0].cond
+ res = torch.zeros((len(c),) + param.shape, device=param.device, dtype=param.dtype)
+ for i, cond_schedule in enumerate(c):
target_index = 0
for current, (end_at, cond) in enumerate(cond_schedule):
if current_step <= end_at:
@@ -140,6 +218,30 @@ def reconstruct_cond_batch(c: ScheduledPromptBatch, current_step):
return res
+def reconstruct_multicond_batch(c: MulticondLearnedConditioning, current_step):
+ param = c.batch[0][0].schedules[0].cond
+
+ tensors = []
+ conds_list = []
+
+ for batch_no, composable_prompts in enumerate(c.batch):
+ conds_for_batch = []
+
+ for cond_index, composable_prompt in enumerate(composable_prompts):
+ target_index = 0
+ for current, (end_at, cond) in enumerate(composable_prompt.schedules):
+ if current_step <= end_at:
+ target_index = current
+ break
+
+ conds_for_batch.append((len(tensors), composable_prompt.weight))
+ tensors.append(composable_prompt.schedules[target_index].cond)
+
+ conds_list.append(conds_for_batch)
+
+ return conds_list, torch.stack(tensors).to(device=param.device, dtype=param.dtype)
+
+
re_attention = re.compile(r"""
\\\(|
\\\)|
diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py
index dbf570d2..497df943 100644
--- a/modules/sd_samplers.py
+++ b/modules/sd_samplers.py
@@ -13,31 +13,57 @@ from modules.shared import opts, cmd_opts, state
import modules.shared as shared
-SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases'])
+SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options'])
samplers_k_diffusion = [
- ('Euler a', 'sample_euler_ancestral', ['k_euler_a']),
- ('Euler', 'sample_euler', ['k_euler']),
- ('LMS', 'sample_lms', ['k_lms']),
- ('Heun', 'sample_heun', ['k_heun']),
- ('DPM2', 'sample_dpm_2', ['k_dpm_2']),
- ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a']),
- ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast']),
- ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad']),
+ ('Euler a', 'sample_euler_ancestral', ['k_euler_a'], {}),
+ ('Euler', 'sample_euler', ['k_euler'], {}),
+ ('LMS', 'sample_lms', ['k_lms'], {}),
+ ('Heun', 'sample_heun', ['k_heun'], {}),
+ ('DPM2', 'sample_dpm_2', ['k_dpm_2'], {}),
+ ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {}),
+ ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {}),
+ ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {}),
+ ('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
+ ('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras'}),
+ ('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras'}),
]
samplers_data_k_diffusion = [
- SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases)
- for label, funcname, aliases in samplers_k_diffusion
+ SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
+ for label, funcname, aliases, options in samplers_k_diffusion
if hasattr(k_diffusion.sampling, funcname)
]
-samplers = [
+all_samplers = [
*samplers_data_k_diffusion,
- SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), []),
- SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), []),
+ SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}),
+ SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}),
]
-samplers_for_img2img = [x for x in samplers if x.name not in ['PLMS', 'DPM fast', 'DPM adaptive']]
+
+samplers = []
+samplers_for_img2img = []
+
+
+def create_sampler_with_index(list_of_configs, index, model):
+ config = list_of_configs[index]
+ sampler = config.constructor(model)
+ sampler.config = config
+
+ return sampler
+
+
+def set_samplers():
+ global samplers, samplers_for_img2img
+
+ hidden = set(opts.hide_samplers)
+ hidden_img2img = set(opts.hide_samplers + ['PLMS', 'DPM fast', 'DPM adaptive'])
+
+ samplers = [x for x in all_samplers if x.name not in hidden]
+ samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img]
+
+
+set_samplers()
sampler_extra_params = {
'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
@@ -104,14 +130,18 @@ class VanillaStableDiffusionSampler:
self.step = 0
self.eta = None
self.default_eta = 0.0
+ self.config = None
def number_of_needed_noises(self, p):
return 0
def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs):
- cond = prompt_parser.reconstruct_cond_batch(cond, self.step)
+ conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step)
+ assert all([len(conds) == 1 for conds in conds_list]), 'composition via AND is not supported for DDIM/PLMS samplers'
+ cond = tensor
+
if self.mask is not None:
img_orig = self.sampler.model.q_sample(self.init_latent, ts)
x_dec = img_orig * self.mask + self.nmask * x_dec
@@ -183,19 +213,31 @@ class CFGDenoiser(torch.nn.Module):
self.step = 0
def forward(self, x, sigma, uncond, cond, cond_scale):
- cond = prompt_parser.reconstruct_cond_batch(cond, self.step)
+ conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step)
+ batch_size = len(conds_list)
+ repeats = [len(conds_list[i]) for i in range(batch_size)]
+
+ x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
+ sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
+ cond_in = torch.cat([tensor, uncond])
+
if shared.batch_cond_uncond:
- x_in = torch.cat([x] * 2)
- sigma_in = torch.cat([sigma] * 2)
- cond_in = torch.cat([uncond, cond])
- uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
- denoised = uncond + (cond - uncond) * cond_scale
+ x_out = self.inner_model(x_in, sigma_in, cond=cond_in)
else:
- uncond = self.inner_model(x, sigma, cond=uncond)
- cond = self.inner_model(x, sigma, cond=cond)
- denoised = uncond + (cond - uncond) * cond_scale
+ x_out = torch.zeros_like(x_in)
+ for batch_offset in range(0, x_out.shape[0], batch_size):
+ a = batch_offset
+ b = a + batch_size
+ x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=cond_in[a:b])
+
+ denoised_uncond = x_out[-batch_size:]
+ denoised = torch.clone(denoised_uncond)
+
+ for i, conds in enumerate(conds_list):
+ for cond_index, weight in conds:
+ denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale)
if self.mask is not None:
denoised = self.init_latent * self.mask + self.nmask * denoised
@@ -250,6 +292,7 @@ class KDiffusionSampler:
self.stop_at = None
self.eta = None
self.default_eta = 1.0
+ self.config = None
def callback_state(self, d):
store_latent(d["denoised"])
@@ -314,9 +357,12 @@ class KDiffusionSampler:
steps = steps or p.steps
if p.sampler_noise_scheduler_override:
- sigmas = p.sampler_noise_scheduler_override(steps)
+ sigmas = p.sampler_noise_scheduler_override(steps)
+ elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
+ sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=0.1, sigma_max=10, device=shared.device)
else:
- sigmas = self.model_wrap.get_sigmas(steps)
+ sigmas = self.model_wrap.get_sigmas(steps)
+
x = x * sigmas[0]
extra_params_kwargs = self.initialize(p)
diff --git a/modules/shared.py b/modules/shared.py
index e52c9b1d..5c16f025 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -13,6 +13,7 @@ import modules.memmon
import modules.sd_models
import modules.styles
import modules.devices as devices
+from modules import sd_samplers
from modules.paths import script_path, sd_path
sd_model_file = os.path.join(script_path, 'model.ckpt')
@@ -55,7 +56,7 @@ parser.add_argument("--hide-ui-dir-config", action='store_true', help="hide dire
parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default=os.path.join(script_path, 'config.json'))
parser.add_argument("--gradio-debug", action='store_true', help="launch gradio with --debug option")
parser.add_argument("--gradio-auth", type=str, help='set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
-parser.add_argument("--gradio-img2img-tool", type=str, help='gradio image uploader tool: can be either editor for ctopping, or color-sketch for drawing', choices=["color-sketch", "editor"], default="color-sketch")
+parser.add_argument("--gradio-img2img-tool", type=str, help='gradio image uploader tool: can be either editor for ctopping, or color-sketch for drawing', choices=["color-sketch", "editor"], default="editor")
parser.add_argument("--opt-channelslast", action='store_true', help="change memory type for stable diffusion to channels last")
parser.add_argument("--styles-file", type=str, help="filename to use for styles", default=os.path.join(script_path, 'styles.csv'))
parser.add_argument("--autolaunch", action='store_true', help="open the webui URL in the system's default browser upon launch", default=False)
@@ -235,17 +236,20 @@ options_templates.update(options_section(('ui', "User interface"), {
"font": OptionInfo("", "Font for image grids that have text"),
"js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"),
"js_modal_lightbox_initialy_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"),
+ "show_progress_in_title": OptionInfo(True, "Show generation progress in window title."),
}))
options_templates.update(options_section(('sampler-params', "Sampler parameters"), {
- "eta_ddim": OptionInfo(0.0, "eta (noise multiplier) for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
- "eta_ancestral": OptionInfo(1.0, "eta (noise multiplier) for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
- "ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}),
- 's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
- 's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
- 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
+ "hide_samplers": OptionInfo([], "Hide samplers in user interface (requires restart)", gr.CheckboxGroup, lambda: {"choices": [x.name for x in sd_samplers.all_samplers]}),
+ "eta_ddim": OptionInfo(0.0, "eta (noise multiplier) for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
+ "eta_ancestral": OptionInfo(1.0, "eta (noise multiplier) for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
+ "ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}),
+ 's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
+ 's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
+ 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
}))
+
class Options:
data = None
data_labels = options_templates
diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py
index f545a993..f1c002a2 100644
--- a/modules/textual_inversion/preprocess.py
+++ b/modules/textual_inversion/preprocess.py
@@ -1,5 +1,7 @@
import os
from PIL import Image, ImageOps
+import platform
+import sys
import tqdm
from modules import shared, images
@@ -10,7 +12,7 @@ def preprocess(process_src, process_dst, process_flip, process_split, process_ca
src = os.path.abspath(process_src)
dst = os.path.abspath(process_dst)
- assert src != dst, 'same directory specified as source and desitnation'
+ assert src != dst, 'same directory specified as source and destination'
os.makedirs(dst, exist_ok=True)
@@ -25,6 +27,7 @@ def preprocess(process_src, process_dst, process_flip, process_split, process_ca
def save_pic_with_caption(image, index):
if process_caption:
caption = "-" + shared.interrogator.generate_caption(image)
+ caption = sanitize_caption(os.path.join(dst, f"{index:05}-{subindex[0]}"), caption, ".png")
else:
caption = filename
caption = os.path.splitext(caption)[0]
@@ -75,3 +78,27 @@ def preprocess(process_src, process_dst, process_flip, process_split, process_ca
if process_caption:
shared.interrogator.send_blip_to_ram()
+
+def sanitize_caption(base_path, original_caption, suffix):
+ operating_system = platform.system().lower()
+ if (operating_system == "windows"):
+ invalid_path_characters = "\\/:*?\"<>|"
+ max_path_length = 259
+ else:
+ invalid_path_characters = "/" #linux/macos
+ max_path_length = 1023
+ caption = original_caption
+ for invalid_character in invalid_path_characters:
+ caption = caption.replace(invalid_character, "")
+ fixed_path_length = len(base_path) + len(suffix)
+ if fixed_path_length + len(caption) <= max_path_length:
+ return caption
+ caption_tokens = caption.split()
+ new_caption = ""
+ for token in caption_tokens:
+ last_caption = new_caption
+ new_caption = new_caption + token + " "
+ if (len(new_caption) + fixed_path_length - 1 > max_path_length):
+ break
+ print(f"\nPath will be too long. Truncated caption: {original_caption}\nto: {last_caption}", file=sys.stderr)
+ return last_caption.strip()
diff --git a/modules/ui.py b/modules/ui.py
index de6342a4..9620350f 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -34,7 +34,7 @@ import modules.gfpgan_model
import modules.codeformer_model
import modules.styles
import modules.generation_parameters_copypaste
-from modules.prompt_parser import get_learned_conditioning_prompt_schedules
+from modules import prompt_parser
from modules.images import apply_filename_pattern, get_next_sequence_number
import modules.textual_inversion.ui
@@ -394,7 +394,9 @@ def connect_reuse_seed(seed: gr.Number, reuse_seed: gr.Button, generation_info:
def update_token_counter(text, steps):
try:
- prompt_schedules = get_learned_conditioning_prompt_schedules([text], steps)
+ _, prompt_flat_list, _ = prompt_parser.get_multicond_prompt_list([text])
+ prompt_schedules = prompt_parser.get_learned_conditioning_prompt_schedules(prompt_flat_list, steps)
+
except Exception:
# a parsing error can happen here during typing, and we don't want to bother the user with
# messages related to it in console
@@ -1210,6 +1212,7 @@ def create_ui(wrap_gradio_gpu_call):
)
def request_restart():
+ shared.state.interrupt()
settings_interface.gradio_ref.do_restart = True
restart_gradio.click(
diff --git a/scripts/img2imgalt.py b/scripts/img2imgalt.py
index 0ef137f7..f9894cb0 100644
--- a/scripts/img2imgalt.py
+++ b/scripts/img2imgalt.py
@@ -8,7 +8,6 @@ import gradio as gr
from modules import processing, shared, sd_samplers, prompt_parser
from modules.processing import Processed
-from modules.sd_samplers import samplers
from modules.shared import opts, cmd_opts, state
import torch
@@ -159,7 +158,7 @@ class Script(scripts.Script):
combined_noise = ((1 - randomness) * rec_noise + randomness * rand_noise) / ((randomness**2 + (1-randomness)**2) ** 0.5)
- sampler = samplers[p.sampler_index].constructor(p.sd_model)
+ sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, p.sampler_index, p.sd_model)
sigmas = sampler.model_wrap.get_sigmas(p.steps)
diff --git a/scripts/outpainting_mk_2.py b/scripts/outpainting_mk_2.py
index 11613ca3..a6468e09 100644
--- a/scripts/outpainting_mk_2.py
+++ b/scripts/outpainting_mk_2.py
@@ -85,8 +85,11 @@ def get_matched_noise(_np_src_image, np_mask_rgb, noise_q=1, color_variation=0.0
src_dist = np.absolute(src_fft)
src_phase = src_fft / src_dist
+ # create a generator with a static seed to make outpainting deterministic / only follow global seed
+ rng = np.random.default_rng(0)
+
noise_window = _get_gaussian_window(width, height, mode=1) # start with simple gaussian noise
- noise_rgb = np.random.random_sample((width, height, num_channels))
+ noise_rgb = rng.random((width, height, num_channels))
noise_grey = (np.sum(noise_rgb, axis=2) / 3.)
noise_rgb *= color_variation # the colorfulness of the starting noise is blended to greyscale with a parameter
for c in range(num_channels):
diff --git a/scripts/xy_grid.py b/scripts/xy_grid.py
index 1237e754..210c7b6e 100644
--- a/scripts/xy_grid.py
+++ b/scripts/xy_grid.py
@@ -1,8 +1,9 @@
from collections import namedtuple
from copy import copy
-from itertools import permutations
+from itertools import permutations, chain
import random
-
+import csv
+from io import StringIO
from PIL import Image
import numpy as np
@@ -168,7 +169,6 @@ re_range_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d
re_range_count = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\[(\d+)\s*\])?\s*")
re_range_count_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\[(\d+(?:.\d*)?)\s*\])?\s*")
-
class Script(scripts.Script):
def title(self):
return "X/Y plot"
@@ -197,7 +197,7 @@ class Script(scripts.Script):
if opt.label == 'Nothing':
return [0]
- valslist = [x.strip() for x in vals.split(",")]
+ valslist = list(map(str.strip,chain.from_iterable(csv.reader(StringIO(vals)))))
if opt.type == int:
valslist_ext = []
diff --git a/webui.py b/webui.py
index 47848ba5..480360fe 100644
--- a/webui.py
+++ b/webui.py
@@ -2,11 +2,12 @@ import os
import threading
import time
import importlib
-from modules import devices
-from modules.paths import script_path
import signal
import threading
+from modules.paths import script_path
+
+from modules import devices, sd_samplers
import modules.codeformer_model as codeformer
import modules.extras
import modules.face_restoration
@@ -109,6 +110,8 @@ def webui():
time.sleep(0.5)
break
+ sd_samplers.set_samplers()
+
print('Reloading Custom Scripts')
modules.scripts.reload_scripts(os.path.join(script_path, "scripts"))
print('Reloading modules: modules.ui')