diff options
22 files changed, 452 insertions, 272 deletions
diff --git a/extensions-builtin/Lora/extra_networks_lora.py b/extensions-builtin/Lora/extra_networks_lora.py index ba2945c6..005ff32c 100644 --- a/extensions-builtin/Lora/extra_networks_lora.py +++ b/extensions-builtin/Lora/extra_networks_lora.py @@ -6,9 +6,14 @@ class ExtraNetworkLora(extra_networks.ExtraNetwork): def __init__(self):
super().__init__('lora')
+ self.errors = {}
+ """mapping of network names to the number of errors the network had during operation"""
+
def activate(self, p, params_list):
additional = shared.opts.sd_lora
+ self.errors.clear()
+
if additional != "None" and additional in networks.available_networks and not any(x for x in params_list if x.items[0] == additional):
p.all_prompts = [x + f"<lora:{additional}:{shared.opts.extra_networks_default_multiplier}>" for x in p.all_prompts]
params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier]))
@@ -56,4 +61,7 @@ class ExtraNetworkLora(extra_networks.ExtraNetwork): p.extra_generation_params["Lora hashes"] = ", ".join(network_hashes)
def deactivate(self, p):
- pass
+ if self.errors:
+ p.comment("Networks with errors: " + ", ".join(f"{k} ({v})" for k, v in self.errors.items()))
+
+ self.errors.clear()
diff --git a/extensions-builtin/Lora/networks.py b/extensions-builtin/Lora/networks.py index 1645b822..96d14344 100644 --- a/extensions-builtin/Lora/networks.py +++ b/extensions-builtin/Lora/networks.py @@ -1,3 +1,4 @@ +import logging
import os
import re
@@ -194,7 +195,7 @@ def load_network(name, network_on_disk): net.modules[key] = net_module
if keys_failed_to_match:
- print(f"Failed to match keys when loading network {network_on_disk.filename}: {keys_failed_to_match}")
+ logging.debug(f"Network {network_on_disk.filename} didn't match keys: {keys_failed_to_match}")
return net
@@ -207,7 +208,6 @@ def purge_networks_from_memory(): devices.torch_gc()
-
def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=None):
already_loaded = {}
@@ -248,7 +248,7 @@ def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=No if net is None:
failed_to_load_networks.append(name)
- print(f"Couldn't find network with name {name}")
+ logging.info(f"Couldn't find network with name {name}")
continue
net.te_multiplier = te_multipliers[i] if te_multipliers else 1.0
@@ -257,7 +257,7 @@ def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=No loaded_networks.append(net)
if failed_to_load_networks:
- sd_hijack.model_hijack.comments.append("Failed to find networks: " + ", ".join(failed_to_load_networks))
+ sd_hijack.model_hijack.comments.append("Networks not found: " + ", ".join(failed_to_load_networks))
purge_networks_from_memory()
@@ -327,20 +327,25 @@ def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn for net in loaded_networks:
module = net.modules.get(network_layer_name, None)
if module is not None and hasattr(self, 'weight'):
- with torch.no_grad():
- updown, ex_bias = module.calc_updown(self.weight)
-
- if len(self.weight.shape) == 4 and self.weight.shape[1] == 9:
- # inpainting model. zero pad updown to make channel[1] 4 to 9
- updown = torch.nn.functional.pad(updown, (0, 0, 0, 0, 0, 5))
+ try:
+ with torch.no_grad():
+ updown, ex_bias = module.calc_updown(self.weight)
+
+ if len(self.weight.shape) == 4 and self.weight.shape[1] == 9:
+ # inpainting model. zero pad updown to make channel[1] 4 to 9
+ updown = torch.nn.functional.pad(updown, (0, 0, 0, 0, 0, 5))
+
+ self.weight += updown
+ if ex_bias is not None and hasattr(self, 'bias'):
+ if self.bias is None:
+ self.bias = torch.nn.Parameter(ex_bias)
+ else:
+ self.bias += ex_bias
+ except RuntimeError as e:
+ logging.debug(f"Network {net.name} layer {network_layer_name}: {e}")
+ extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
- self.weight += updown
- if ex_bias is not None and hasattr(self, 'bias'):
- if self.bias is None:
- self.bias = torch.nn.Parameter(ex_bias)
- else:
- self.bias += ex_bias
- continue
+ continue
module_q = net.modules.get(network_layer_name + "_q_proj", None)
module_k = net.modules.get(network_layer_name + "_k_proj", None)
@@ -348,26 +353,33 @@ def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn module_out = net.modules.get(network_layer_name + "_out_proj", None)
if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out:
- with torch.no_grad():
- updown_q, _ = module_q.calc_updown(self.in_proj_weight)
- updown_k, _ = module_k.calc_updown(self.in_proj_weight)
- updown_v, _ = module_v.calc_updown(self.in_proj_weight)
- updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
- updown_out, ex_bias = module_out.calc_updown(self.out_proj.weight)
-
- self.in_proj_weight += updown_qkv
- self.out_proj.weight += updown_out
+ try:
+ with torch.no_grad():
+ updown_q, _ = module_q.calc_updown(self.in_proj_weight)
+ updown_k, _ = module_k.calc_updown(self.in_proj_weight)
+ updown_v, _ = module_v.calc_updown(self.in_proj_weight)
+ updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
+ updown_out, ex_bias = module_out.calc_updown(self.out_proj.weight)
+
+ self.in_proj_weight += updown_qkv
+ self.out_proj.weight += updown_out
if ex_bias is not None:
if self.out_proj.bias is None:
self.out_proj.bias = torch.nn.Parameter(ex_bias)
else:
self.out_proj.bias += ex_bias
- continue
+
+ except RuntimeError as e:
+ logging.debug(f"Network {net.name} layer {network_layer_name}: {e}")
+ extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
+
+ continue
if module is None:
continue
- print(f'failed to calculate network weights for layer {network_layer_name}')
+ logging.debug(f"Network {net.name} layer {network_layer_name}: couldn't find supported operation")
+ extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
self.network_current_names = wanted_names
@@ -540,6 +552,7 @@ def infotext_pasted(infotext, params): if added:
params["Prompt"] += "\n" + "".join(added)
+extra_network_lora = None
available_networks = {}
available_network_aliases = {}
diff --git a/extensions-builtin/Lora/scripts/lora_script.py b/extensions-builtin/Lora/scripts/lora_script.py index dc307f8c..4c6e774a 100644 --- a/extensions-builtin/Lora/scripts/lora_script.py +++ b/extensions-builtin/Lora/scripts/lora_script.py @@ -23,9 +23,9 @@ def unload(): def before_ui():
ui_extra_networks.register_page(ui_extra_networks_lora.ExtraNetworksPageLora())
- extra_network = extra_networks_lora.ExtraNetworkLora()
- extra_networks.register_extra_network(extra_network)
- extra_networks.register_extra_network_alias(extra_network, "lyco")
+ networks.extra_network_lora = extra_networks_lora.ExtraNetworkLora()
+ extra_networks.register_extra_network(networks.extra_network_lora)
+ extra_networks.register_extra_network_alias(networks.extra_network_lora, "lyco")
if not hasattr(torch.nn, 'Linear_forward_before_network'):
diff --git a/extensions-builtin/Lora/ui_extra_networks_lora.py b/extensions-builtin/Lora/ui_extra_networks_lora.py index 3629e5c0..55409a78 100644 --- a/extensions-builtin/Lora/ui_extra_networks_lora.py +++ b/extensions-builtin/Lora/ui_extra_networks_lora.py @@ -25,9 +25,10 @@ class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage): item = {
"name": name,
"filename": lora_on_disk.filename,
+ "shorthash": lora_on_disk.shorthash,
"preview": self.find_preview(path),
"description": self.find_description(path),
- "search_term": self.search_terms_from_path(lora_on_disk.filename),
+ "search_term": self.search_terms_from_path(lora_on_disk.filename) + " " + (lora_on_disk.hash or ""),
"local_preview": f"{path}.{shared.opts.samples_format}",
"metadata": lora_on_disk.metadata,
"sort_keys": {'default': index, **self.get_sort_keys(lora_on_disk.filename)},
diff --git a/modules/launch_utils.py b/modules/launch_utils.py index 65eb684f..449a8755 100644 --- a/modules/launch_utils.py +++ b/modules/launch_utils.py @@ -173,9 +173,12 @@ def git_clone(url, dir, name, commithash=None): if current_hash == commithash:
return
- run_git('fetch', f"Fetching updates for {name}...", f"Couldn't fetch {name}", autofix=False)
+ if run_git(dir, name, 'config --get remote.origin.url', None, f"Couldn't determine {name}'s origin URL", live=False).strip() != url:
+ run_git(dir, name, f'remote set-url origin "{url}"', None, f"Failed to set {name}'s origin URL", live=False)
- run_git('checkout', f"Checking out commit for {name} with hash: {commithash}...", f"Couldn't checkout commit {commithash} for {name}", live=True)
+ run_git(dir, name, 'fetch', f"Fetching updates for {name}...", f"Couldn't fetch {name}", autofix=False)
+
+ run_git(dir, name, f'checkout {commithash}', f"Checking out commit for {name} with hash: {commithash}...", f"Couldn't checkout commit {commithash} for {name}", live=True)
return
@@ -319,12 +322,12 @@ def prepare_environment(): stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "cf1d67a6fd5ea1aa600c4df58e5b47da45f6bdbf")
stable_diffusion_xl_commit_hash = os.environ.get('STABLE_DIFFUSION_XL_COMMIT_HASH', "5c10deee76adad0032b412294130090932317a87")
- k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "c9fe758757e022f05ca5a53fa8fac28889e4f1cf")
+ k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "ab527a9a6d347f364e3d185ba6d714e22d80cb3c")
codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af")
blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9")
try:
- # the existance of this file is a signal to webui.sh/bat that webui needs to be restarted when it stops execution
+ # the existence of this file is a signal to webui.sh/bat that webui needs to be restarted when it stops execution
os.remove(os.path.join(script_path, "tmp", "restart"))
os.environ.setdefault('SD_WEBUI_RESTARTING', '1')
except OSError:
diff --git a/modules/mac_specific.py b/modules/mac_specific.py index bce527cc..89256c5b 100644 --- a/modules/mac_specific.py +++ b/modules/mac_specific.py @@ -52,9 +52,6 @@ def cumsum_fix(input, cumsum_func, *args, **kwargs): if has_mps: - # MPS fix for randn in torchsde - CondFunc('torchsde._brownian.brownian_interval._randn', lambda _, size, dtype, device, seed: torch.randn(size, dtype=dtype, device=torch.device("cpu"), generator=torch.Generator(torch.device("cpu")).manual_seed(int(seed))).to(device), lambda _, size, dtype, device, seed: device.type == 'mps') - if platform.mac_ver()[0].startswith("13.2."): # MPS workaround for https://github.com/pytorch/pytorch/issues/95188, thanks to danieldk (https://github.com/explosion/curated-transformers/pull/124) CondFunc('torch.nn.functional.linear', lambda _, input, weight, bias: (torch.matmul(input, weight.t()) + bias) if bias is not None else torch.matmul(input, weight.t()), lambda _, input, weight, bias: input.numel() > 10485760) diff --git a/modules/processing.py b/modules/processing.py index 6ad105d7..74366655 100755 --- a/modules/processing.py +++ b/modules/processing.py @@ -1,9 +1,11 @@ +from __future__ import annotations
import json
import logging
import math
import os
import sys
import hashlib
+from dataclasses import dataclass, field
import torch
import numpy as np
@@ -11,7 +13,7 @@ from PIL import Image, ImageOps import random
import cv2
from skimage import exposure
-from typing import Any, Dict, List
+from typing import Any
import modules.sd_hijack
from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet, errors, rng
@@ -104,97 +106,160 @@ def txt2img_image_conditioning(sd_model, x, width, height): return x.new_zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)
+@dataclass(repr=False)
class StableDiffusionProcessing:
- """
- The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
- """
+ sd_model: object = None
+ outpath_samples: str = None
+ outpath_grids: str = None
+ prompt: str = ""
+ prompt_for_display: str = None
+ negative_prompt: str = ""
+ styles: list[str] = field(default_factory=list)
+ seed: int = -1
+ subseed: int = -1
+ subseed_strength: float = 0
+ seed_resize_from_h: int = -1
+ seed_resize_from_w: int = -1
+ seed_enable_extras: bool = True
+ sampler_name: str = None
+ batch_size: int = 1
+ n_iter: int = 1
+ steps: int = 50
+ cfg_scale: float = 7.0
+ width: int = 512
+ height: int = 512
+ restore_faces: bool = None
+ tiling: bool = None
+ do_not_save_samples: bool = False
+ do_not_save_grid: bool = False
+ extra_generation_params: dict[str, Any] = None
+ overlay_images: list = None
+ eta: float = None
+ do_not_reload_embeddings: bool = False
+ denoising_strength: float = 0
+ ddim_discretize: str = None
+ s_min_uncond: float = None
+ s_churn: float = None
+ s_tmax: float = None
+ s_tmin: float = None
+ s_noise: float = None
+ override_settings: dict[str, Any] = None
+ override_settings_restore_afterwards: bool = True
+ sampler_index: int = None
+ refiner_checkpoint: str = None
+ refiner_switch_at: float = None
+ token_merging_ratio = 0
+ token_merging_ratio_hr = 0
+ disable_extra_networks: bool = False
+
+ scripts_value: scripts.ScriptRunner = field(default=None, init=False)
+ script_args_value: list = field(default=None, init=False)
+ scripts_setup_complete: bool = field(default=False, init=False)
+
cached_uc = [None, None]
cached_c = [None, None]
- def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = None, tiling: bool = None, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = None, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None):
- if sampler_index is not None:
+ comments: dict = None
+ sampler: sd_samplers_common.Sampler | None = field(default=None, init=False)
+ is_using_inpainting_conditioning: bool = field(default=False, init=False)
+ paste_to: tuple | None = field(default=None, init=False)
+
+ is_hr_pass: bool = field(default=False, init=False)
+
+ c: tuple = field(default=None, init=False)
+ uc: tuple = field(default=None, init=False)
+
+ rng: rng.ImageRNG | None = field(default=None, init=False)
+ step_multiplier: int = field(default=1, init=False)
+ color_corrections: list = field(default=None, init=False)
+
+ all_prompts: list = field(default=None, init=False)
+ all_negative_prompts: list = field(default=None, init=False)
+ all_seeds: list = field(default=None, init=False)
+ all_subseeds: list = field(default=None, init=False)
+ iteration: int = field(default=0, init=False)
+ main_prompt: str = field(default=None, init=False)
+ main_negative_prompt: str = field(default=None, init=False)
+
+ prompts: list = field(default=None, init=False)
+ negative_prompts: list = field(default=None, init=False)
+ seeds: list = field(default=None, init=False)
+ subseeds: list = field(default=None, init=False)
+ extra_network_data: dict = field(default=None, init=False)
+
+ user: str = field(default=None, init=False)
+
+ sd_model_name: str = field(default=None, init=False)
+ sd_model_hash: str = field(default=None, init=False)
+ sd_vae_name: str = field(default=None, init=False)
+ sd_vae_hash: str = field(default=None, init=False)
+
+ def __post_init__(self):
+ if self.sampler_index is not None:
print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
- self.outpath_samples: str = outpath_samples
- self.outpath_grids: str = outpath_grids
- self.prompt: str = prompt
- self.prompt_for_display: str = None
- self.negative_prompt: str = (negative_prompt or "")
- self.styles: list = styles or []
- self.seed: int = seed
- self.subseed: int = subseed
- self.subseed_strength: float = subseed_strength
- self.seed_resize_from_h: int = seed_resize_from_h
- self.seed_resize_from_w: int = seed_resize_from_w
- self.sampler_name: str = sampler_name
- self.batch_size: int = batch_size
- self.n_iter: int = n_iter
- self.steps: int = steps
- self.cfg_scale: float = cfg_scale
- self.width: int = width
- self.height: int = height
- self.restore_faces: bool = restore_faces
- self.tiling: bool = tiling
- self.do_not_save_samples: bool = do_not_save_samples
- self.do_not_save_grid: bool = do_not_save_grid
- self.extra_generation_params: dict = extra_generation_params or {}
- self.overlay_images = overlay_images
- self.eta = eta
- self.do_not_reload_embeddings = do_not_reload_embeddings
- self.paste_to = None
- self.color_corrections = None
- self.denoising_strength: float = denoising_strength
+ self.comments = {}
+
self.sampler_noise_scheduler_override = None
- self.ddim_discretize = ddim_discretize or opts.ddim_discretize
- self.s_min_uncond = s_min_uncond or opts.s_min_uncond
- self.s_churn = s_churn or opts.s_churn
- self.s_tmin = s_tmin or opts.s_tmin
- self.s_tmax = (s_tmax if s_tmax is not None else opts.s_tmax) or float('inf')
- self.s_noise = s_noise if s_noise is not None else opts.s_noise
- self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts}
- self.override_settings_restore_afterwards = override_settings_restore_afterwards
- self.is_using_inpainting_conditioning = False
- self.disable_extra_networks = False
- self.token_merging_ratio = 0
- self.token_merging_ratio_hr = 0
-
- if not seed_enable_extras:
+ self.s_min_uncond = self.s_min_uncond if self.s_min_uncond is not None else opts.s_min_uncond
+ self.s_churn = self.s_churn if self.s_churn is not None else opts.s_churn
+ self.s_tmin = self.s_tmin if self.s_tmin is not None else opts.s_tmin
+ self.s_tmax = (self.s_tmax if self.s_tmax is not None else opts.s_tmax) or float('inf')
+ self.s_noise = self.s_noise if self.s_noise is not None else opts.s_noise
+
+ self.extra_generation_params = self.extra_generation_params or {}
+ self.override_settings = self.override_settings or {}
+ self.script_args = self.script_args or {}
+
+ self.refiner_checkpoint_info = None
+
+ if not self.seed_enable_extras:
self.subseed = -1
self.subseed_strength = 0
self.seed_resize_from_h = 0
self.seed_resize_from_w = 0
- self.scripts = None
- self.script_args = script_args
- self.all_prompts = None
- self.all_negative_prompts = None
- self.all_seeds = None
- self.all_subseeds = None
- self.iteration = 0
- self.is_hr_pass = False
- self.sampler = None
- self.main_prompt = None
- self.main_negative_prompt = None
-
- self.prompts = None
- self.negative_prompts = None
- self.extra_network_data = None
- self.seeds = None
- self.subseeds = None
-
- self.step_multiplier = 1
self.cached_uc = StableDiffusionProcessing.cached_uc
self.cached_c = StableDiffusionProcessing.cached_c
- self.uc = None
- self.c = None
- self.rng: rng.ImageRNG = None
-
- self.user = None
@property
def sd_model(self):
return shared.sd_model
+ @sd_model.setter
+ def sd_model(self, value):
+ pass
+
+ @property
+ def scripts(self):
+ return self.scripts_value
+
+ @scripts.setter
+ def scripts(self, value):
+ self.scripts_value = value
+
+ if self.scripts_value and self.script_args_value and not self.scripts_setup_complete:
+ self.setup_scripts()
+
+ @property
+ def script_args(self):
+ return self.script_args_value
+
+ @script_args.setter
+ def script_args(self, value):
+ self.script_args_value = value
+
+ if self.scripts_value and self.script_args_value and not self.scripts_setup_complete:
+ self.setup_scripts()
+
+ def setup_scripts(self):
+ self.scripts_setup_complete = True
+
+ self.scripts.setup_scrips(self)
+
+ def comment(self, text):
+ self.comments[text] = 1
+
def txt2img_image_conditioning(self, x, width=None, height=None):
self.is_using_inpainting_conditioning = self.sd_model.model.conditioning_key in {'hybrid', 'concat'}
@@ -398,7 +463,7 @@ class Processed: self.subseed = subseed
self.subseed_strength = p.subseed_strength
self.info = info
- self.comments = comments
+ self.comments = "".join(f"{comment}\n" for comment in p.comments)
self.width = p.width
self.height = p.height
self.sampler_name = p.sampler_name
@@ -408,7 +473,10 @@ class Processed: self.batch_size = p.batch_size
self.restore_faces = p.restore_faces
self.face_restoration_model = opts.face_restoration_model if p.restore_faces else None
- self.sd_model_hash = shared.sd_model.sd_model_hash
+ self.sd_model_name = p.sd_model_name
+ self.sd_model_hash = p.sd_model_hash
+ self.sd_vae_name = p.sd_vae_name
+ self.sd_vae_hash = p.sd_vae_hash
self.seed_resize_from_w = p.seed_resize_from_w
self.seed_resize_from_h = p.seed_resize_from_h
self.denoising_strength = getattr(p, 'denoising_strength', None)
@@ -459,7 +527,10 @@ class Processed: "batch_size": self.batch_size,
"restore_faces": self.restore_faces,
"face_restoration_model": self.face_restoration_model,
+ "sd_model_name": self.sd_model_name,
"sd_model_hash": self.sd_model_hash,
+ "sd_vae_name": self.sd_vae_name,
+ "sd_vae_hash": self.sd_vae_hash,
"seed_resize_from_w": self.seed_resize_from_w,
"seed_resize_from_h": self.seed_resize_from_h,
"denoising_strength": self.denoising_strength,
@@ -578,10 +649,10 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter "Seed": p.all_seeds[0] if use_main_prompt else all_seeds[index],
"Face restoration": opts.face_restoration_model if p.restore_faces else None,
"Size": f"{p.width}x{p.height}",
- "Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
- "Model": (None if not opts.add_model_name_to_info else shared.sd_model.sd_checkpoint_info.name_for_extra),
- "VAE hash": p.loaded_vae_hash if opts.add_model_hash_to_info else None,
- "VAE": p.loaded_vae_name if opts.add_model_name_to_info else None,
+ "Model hash": p.sd_model_hash if opts.add_model_hash_to_info else None,
+ "Model": p.sd_model_name if opts.add_model_name_to_info else None,
+ "VAE hash": p.sd_vae_hash if opts.add_model_hash_to_info else None,
+ "VAE": p.sd_vae_name if opts.add_model_name_to_info else None,
"Variation seed": (None if p.subseed_strength == 0 else (p.all_subseeds[0] if use_main_prompt else all_subseeds[index])),
"Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
"Seed resize from": (None if p.seed_resize_from_w <= 0 or p.seed_resize_from_h <= 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
@@ -670,14 +741,19 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: if p.tiling is None:
p.tiling = opts.tiling
- p.loaded_vae_name = sd_vae.get_loaded_vae_name()
- p.loaded_vae_hash = sd_vae.get_loaded_vae_hash()
+ if p.refiner_checkpoint not in (None, "", "None"):
+ p.refiner_checkpoint_info = sd_models.get_closet_checkpoint_match(p.refiner_checkpoint)
+ if p.refiner_checkpoint_info is None:
+ raise Exception(f'Could not find checkpoint with name {p.refiner_checkpoint}')
+
+ p.sd_model_name = shared.sd_model.sd_checkpoint_info.name_for_extra
+ p.sd_model_hash = shared.sd_model.sd_model_hash
+ p.sd_vae_name = sd_vae.get_loaded_vae_name()
+ p.sd_vae_hash = sd_vae.get_loaded_vae_hash()
modules.sd_hijack.model_hijack.apply_circular(p.tiling)
modules.sd_hijack.model_hijack.clear_comments()
- comments = {}
-
p.setup_prompts()
if type(seed) == list:
@@ -757,7 +833,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: p.setup_conds()
for comment in model_hijack.comments:
- comments[comment] = 1
+ p.comment(comment)
p.extra_generation_params.update(model_hijack.extra_generation_params)
@@ -886,7 +962,6 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: images_list=output_images,
seed=p.all_seeds[0],
info=infotexts[0],
- comments="".join(f"{comment}\n" for comment in comments),
subseed=p.all_subseeds[0],
index_of_first_image=index_of_first_image,
infotexts=infotexts,
@@ -910,49 +985,51 @@ def old_hires_fix_first_pass_dimensions(width, height): return width, height
+@dataclass(repr=False)
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
- sampler = None
+ enable_hr: bool = False
+ denoising_strength: float = 0.75
+ firstphase_width: int = 0
+ firstphase_height: int = 0
+ hr_scale: float = 2.0
+ hr_upscaler: str = None
+ hr_second_pass_steps: int = 0
+ hr_resize_x: int = 0
+ hr_resize_y: int = 0
+ hr_checkpoint_name: str = None
+ hr_sampler_name: str = None
+ hr_prompt: str = ''
+ hr_negative_prompt: str = ''
+
cached_hr_uc = [None, None]
cached_hr_c = [None, None]
- def __init__(self, enable_hr: bool = False, denoising_strength: float = 0.75, firstphase_width: int = 0, firstphase_height: int = 0, hr_scale: float = 2.0, hr_upscaler: str = None, hr_second_pass_steps: int = 0, hr_resize_x: int = 0, hr_resize_y: int = 0, hr_checkpoint_name: str = None, hr_sampler_name: str = None, hr_prompt: str = '', hr_negative_prompt: str = '', **kwargs):
- super().__init__(**kwargs)
- self.enable_hr = enable_hr
- self.denoising_strength = denoising_strength
- self.hr_scale = hr_scale
- self.hr_upscaler = hr_upscaler
- self.hr_second_pass_steps = hr_second_pass_steps
- self.hr_resize_x = hr_resize_x
- self.hr_resize_y = hr_resize_y
- self.hr_upscale_to_x = hr_resize_x
- self.hr_upscale_to_y = hr_resize_y
- self.hr_checkpoint_name = hr_checkpoint_name
- self.hr_checkpoint_info = None
- self.hr_sampler_name = hr_sampler_name
- self.hr_prompt = hr_prompt
- self.hr_negative_prompt = hr_negative_prompt
- self.all_hr_prompts = None
- self.all_hr_negative_prompts = None
- self.latent_scale_mode = None
-
- if firstphase_width != 0 or firstphase_height != 0:
+ hr_checkpoint_info: dict = field(default=None, init=False)
+ hr_upscale_to_x: int = field(default=0, init=False)
+ hr_upscale_to_y: int = field(default=0, init=False)
+ truncate_x: int = field(default=0, init=False)
+ truncate_y: int = field(default=0, init=False)
+ applied_old_hires_behavior_to: tuple = field(default=None, init=False)
+ latent_scale_mode: dict = field(default=None, init=False)
+ hr_c: tuple | None = field(default=None, init=False)
+ hr_uc: tuple | None = field(default=None, init=False)
+ all_hr_prompts: list = field(default=None, init=False)
+ all_hr_negative_prompts: list = field(default=None, init=False)
+ hr_prompts: list = field(default=None, init=False)
+ hr_negative_prompts: list = field(default=None, init=False)
+ hr_extra_network_data: list = field(default=None, init=False)
+
+ def __post_init__(self):
+ super().__post_init__()
+
+ if self.firstphase_width != 0 or self.firstphase_height != 0:
self.hr_upscale_to_x = self.width
self.hr_upscale_to_y = self.height
- self.width = firstphase_width
- self.height = firstphase_height
-
- self.truncate_x = 0
- self.truncate_y = 0
- self.applied_old_hires_behavior_to = None
-
- self.hr_prompts = None
- self.hr_negative_prompts = None
- self.hr_extra_network_data = None
+ self.width = self.firstphase_width
+ self.height = self.firstphase_height
self.cached_hr_uc = StableDiffusionProcessingTxt2Img.cached_hr_uc
self.cached_hr_c = StableDiffusionProcessingTxt2Img.cached_hr_c
- self.hr_c = None
- self.hr_uc = None
def calculate_target_resolution(self):
if opts.use_old_hires_fix_width_height and self.applied_old_hires_behavior_to != (self.width, self.height):
@@ -1146,6 +1223,9 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio())
+ self.sampler = None
+ devices.torch_gc()
+
decoded_samples = decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)
self.is_hr_pass = False
|