aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--.github/ISSUE_TEMPLATE/feature_request.md2
-rw-r--r--CODEOWNERS1
-rw-r--r--README.md10
-rw-r--r--javascript/contextMenus.js73
-rw-r--r--launch.py4
-rw-r--r--modules/hypernetwork.py98
-rw-r--r--modules/hypernetworks/hypernetwork.py283
-rw-r--r--modules/hypernetworks/ui.py43
-rw-r--r--modules/ngrok.py15
-rw-r--r--modules/safe.py17
-rw-r--r--modules/sd_hijack.py23
-rw-r--r--modules/sd_hijack_optimizations.py43
-rw-r--r--modules/sd_samplers.py24
-rw-r--r--modules/shared.py16
-rw-r--r--modules/textual_inversion/textual_inversion.py12
-rw-r--r--modules/textual_inversion/ui.py1
-rw-r--r--modules/ui.py103
-rw-r--r--script.js11
-rw-r--r--scripts/loopback.py4
-rw-r--r--scripts/xy_grid.py6
-rw-r--r--style.css21
-rw-r--r--textual_inversion_templates/hypernetwork.txt27
-rw-r--r--textual_inversion_templates/none.txt1
-rw-r--r--webui.py6
24 files changed, 635 insertions, 209 deletions
diff --git a/.github/ISSUE_TEMPLATE/feature_request.md b/.github/ISSUE_TEMPLATE/feature_request.md
index bbcbbe7d..eda42fa7 100644
--- a/.github/ISSUE_TEMPLATE/feature_request.md
+++ b/.github/ISSUE_TEMPLATE/feature_request.md
@@ -2,7 +2,7 @@
name: Feature request
about: Suggest an idea for this project
title: ''
-labels: ''
+labels: 'suggestion'
assignees: ''
---
diff --git a/CODEOWNERS b/CODEOWNERS
new file mode 100644
index 00000000..935fedcf
--- /dev/null
+++ b/CODEOWNERS
@@ -0,0 +1 @@
+* @AUTOMATIC1111
diff --git a/README.md b/README.md
index 561eb03d..a10faa01 100644
--- a/README.md
+++ b/README.md
@@ -28,10 +28,12 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- CodeFormer, face restoration tool as an alternative to GFPGAN
- RealESRGAN, neural network upscaler
- ESRGAN, neural network upscaler with a lot of third party models
- - SwinIR, neural network upscaler
+ - SwinIR and Swin2SR([see here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/2092)), neural network upscalers
- LDSR, Latent diffusion super resolution upscaling
- Resizing aspect ratio options
- Sampling method selection
+ - Adjust sampler eta values (noise multiplier)
+ - More advanced noise setting options
- Interrupt processing at any time
- 4GB video card support (also reports of 2GB working)
- Correct seeds for batches
@@ -67,6 +69,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2`
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
- DeepDanbooru integration, creates danbooru style tags for anime prompts (add --deepdanbooru to commandline args)
+- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args)
## Installation and Running
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
@@ -116,6 +119,7 @@ The documentation was moved from this README over to the project's [wiki](https:
- CodeFormer - https://github.com/sczhou/CodeFormer
- ESRGAN - https://github.com/xinntao/ESRGAN
- SwinIR - https://github.com/JingyunLiang/SwinIR
+- Swin2SR - https://github.com/mv-lab/swin2sr
- LDSR - https://github.com/Hafiidz/latent-diffusion
- Ideas for optimizations - https://github.com/basujindal/stable-diffusion
- Doggettx - Cross Attention layer optimization - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing.
@@ -123,6 +127,8 @@ The documentation was moved from this README over to the project's [wiki](https:
- Idea for SD upscale - https://github.com/jquesnelle/txt2imghd
- Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot
- CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator
+- Idea for Composable Diffusion - https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch
+- xformers - https://github.com/facebookresearch/xformers
+- DeepDanbooru - interrogator for anime diffusers https://github.com/KichangKim/DeepDanbooru
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
-- DeepDanbooru - interrogator for anime diffusors https://github.com/KichangKim/DeepDanbooru
- (You)
diff --git a/javascript/contextMenus.js b/javascript/contextMenus.js
index 7852793c..7636c4b3 100644
--- a/javascript/contextMenus.js
+++ b/javascript/contextMenus.js
@@ -16,7 +16,7 @@ contextMenuInit = function(){
oldMenu.remove()
}
- let tabButton = gradioApp().querySelector('button')
+ let tabButton = uiCurrentTab
let baseStyle = window.getComputedStyle(tabButton)
const contextMenu = document.createElement('nav')
@@ -123,44 +123,53 @@ contextMenuInit = function(){
return [appendContextMenuOption, removeContextMenuOption, addContextMenuEventListener]
}
-initResponse = contextMenuInit()
-appendContextMenuOption = initResponse[0]
-removeContextMenuOption = initResponse[1]
-addContextMenuEventListener = initResponse[2]
+initResponse = contextMenuInit();
+appendContextMenuOption = initResponse[0];
+removeContextMenuOption = initResponse[1];
+addContextMenuEventListener = initResponse[2];
-
-//Start example Context Menu Items
-generateOnRepeatId = appendContextMenuOption('#txt2img_generate','Generate forever',function(){
- let genbutton = gradioApp().querySelector('#txt2img_generate');
- let interruptbutton = gradioApp().querySelector('#txt2img_interrupt');
- if(!interruptbutton.offsetParent){
- genbutton.click();
- }
- clearInterval(window.generateOnRepeatInterval)
- window.generateOnRepeatInterval = setInterval(function(){
+(function(){
+ //Start example Context Menu Items
+ let generateOnRepeat = function(genbuttonid,interruptbuttonid){
+ let genbutton = gradioApp().querySelector(genbuttonid);
+ let interruptbutton = gradioApp().querySelector(interruptbuttonid);
if(!interruptbutton.offsetParent){
genbutton.click();
}
- },
- 500)}
-)
-
-cancelGenerateForever = function(){
- clearInterval(window.generateOnRepeatInterval)
-}
-
-appendContextMenuOption('#txt2img_interrupt','Cancel generate forever',cancelGenerateForever)
-appendContextMenuOption('#txt2img_generate', 'Cancel generate forever',cancelGenerateForever)
+ clearInterval(window.generateOnRepeatInterval)
+ window.generateOnRepeatInterval = setInterval(function(){
+ if(!interruptbutton.offsetParent){
+ genbutton.click();
+ }
+ },
+ 500)
+ }
+ appendContextMenuOption('#txt2img_generate','Generate forever',function(){
+ generateOnRepeat('#txt2img_generate','#txt2img_interrupt');
+ })
+ appendContextMenuOption('#img2img_generate','Generate forever',function(){
+ generateOnRepeat('#img2img_generate','#img2img_interrupt');
+ })
-appendContextMenuOption('#roll','Roll three',
- function(){
- let rollbutton = gradioApp().querySelector('#roll');
- setTimeout(function(){rollbutton.click()},100)
- setTimeout(function(){rollbutton.click()},200)
- setTimeout(function(){rollbutton.click()},300)
+ let cancelGenerateForever = function(){
+ clearInterval(window.generateOnRepeatInterval)
}
-)
+
+ appendContextMenuOption('#txt2img_interrupt','Cancel generate forever',cancelGenerateForever)
+ appendContextMenuOption('#txt2img_generate', 'Cancel generate forever',cancelGenerateForever)
+ appendContextMenuOption('#img2img_interrupt','Cancel generate forever',cancelGenerateForever)
+ appendContextMenuOption('#img2img_generate', 'Cancel generate forever',cancelGenerateForever)
+
+ appendContextMenuOption('#roll','Roll three',
+ function(){
+ let rollbutton = get_uiCurrentTabContent().querySelector('#roll');
+ setTimeout(function(){rollbutton.click()},100)
+ setTimeout(function(){rollbutton.click()},200)
+ setTimeout(function(){rollbutton.click()},300)
+ }
+ )
+})();
//End example Context Menu Items
onUiUpdate(function(){
diff --git a/launch.py b/launch.py
index e1000f55..16627a03 100644
--- a/launch.py
+++ b/launch.py
@@ -104,6 +104,7 @@ def prepare_enviroment():
args, skip_torch_cuda_test = extract_arg(args, '--skip-torch-cuda-test')
xformers = '--xformers' in args
deepdanbooru = '--deepdanbooru' in args
+ ngrok = '--ngrok' in args
try:
commit = run(f"{git} rev-parse HEAD").strip()
@@ -134,6 +135,9 @@ def prepare_enviroment():
if not is_installed("deepdanbooru") and deepdanbooru:
run_pip("install git+https://github.com/KichangKim/DeepDanbooru.git@edf73df4cdaeea2cf00e9ac08bd8a9026b7a7b26#egg=deepdanbooru[tensorflow] tensorflow==2.10.0 tensorflow-io==0.27.0", "deepdanbooru")
+ if not is_installed("pyngrok") and ngrok:
+ run_pip("install pyngrok", "ngrok")
+
os.makedirs(dir_repos, exist_ok=True)
git_clone("https://github.com/CompVis/stable-diffusion.git", repo_dir('stable-diffusion'), "Stable Diffusion", stable_diffusion_commit_hash)
diff --git a/modules/hypernetwork.py b/modules/hypernetwork.py
deleted file mode 100644
index 498bc9d8..00000000
--- a/modules/hypernetwork.py
+++ /dev/null
@@ -1,98 +0,0 @@
-import glob
-import os
-import sys
-import traceback
-
-import torch
-
-from ldm.util import default
-from modules import devices, shared
-import torch
-from torch import einsum
-from einops import rearrange, repeat
-
-
-class HypernetworkModule(torch.nn.Module):
- def __init__(self, dim, state_dict):
- super().__init__()
-
- self.linear1 = torch.nn.Linear(dim, dim * 2)
- self.linear2 = torch.nn.Linear(dim * 2, dim)
-
- self.load_state_dict(state_dict, strict=True)
- self.to(devices.device)
-
- def forward(self, x):
- return x + (self.linear2(self.linear1(x)))
-
-
-class Hypernetwork:
- filename = None
- name = None
-
- def __init__(self, filename):
- self.filename = filename
- self.name = os.path.splitext(os.path.basename(filename))[0]
- self.layers = {}
-
- state_dict = torch.load(filename, map_location='cpu')
- for size, sd in state_dict.items():
- self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1]))
-
-
-def list_hypernetworks(path):
- res = {}
- for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True):
- name = os.path.splitext(os.path.basename(filename))[0]
- res[name] = filename
- return res
-
-
-def load_hypernetwork(filename):
- path = shared.hypernetworks.get(filename, None)
- if path is not None:
- print(f"Loading hypernetwork {filename}")
- try:
- shared.loaded_hypernetwork = Hypernetwork(path)
- except Exception:
- print(f"Error loading hypernetwork {path}", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
- else:
- if shared.loaded_hypernetwork is not None:
- print(f"Unloading hypernetwork")
-
- shared.loaded_hypernetwork = None
-
-
-def attention_CrossAttention_forward(self, x, context=None, mask=None):
- h = self.heads
-
- q = self.to_q(x)
- context = default(context, x)
-
- hypernetwork = shared.loaded_hypernetwork
- hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
-
- if hypernetwork_layers is not None:
- k = self.to_k(hypernetwork_layers[0](context))
- v = self.to_v(hypernetwork_layers[1](context))
- else:
- k = self.to_k(context)
- v = self.to_v(context)
-
- q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
-
- sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
-
- if mask is not None:
- mask = rearrange(mask, 'b ... -> b (...)')
- max_neg_value = -torch.finfo(sim.dtype).max
- mask = repeat(mask, 'b j -> (b h) () j', h=h)
- sim.masked_fill_(~mask, max_neg_value)
-
- # attention, what we cannot get enough of
- attn = sim.softmax(dim=-1)
-
- out = einsum('b i j, b j d -> b i d', attn, v)
- out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
- return self.to_out(out)
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
new file mode 100644
index 00000000..aa701bda
--- /dev/null
+++ b/modules/hypernetworks/hypernetwork.py
@@ -0,0 +1,283 @@
+import datetime
+import glob
+import html
+import os
+import sys
+import traceback
+import tqdm
+
+import torch
+
+from ldm.util import default
+from modules import devices, shared, processing, sd_models
+import torch
+from torch import einsum
+from einops import rearrange, repeat
+import modules.textual_inversion.dataset
+
+
+class HypernetworkModule(torch.nn.Module):
+ def __init__(self, dim, state_dict=None):
+ super().__init__()
+
+ self.linear1 = torch.nn.Linear(dim, dim * 2)
+ self.linear2 = torch.nn.Linear(dim * 2, dim)
+
+ if state_dict is not None:
+ self.load_state_dict(state_dict, strict=True)
+ else:
+
+ self.linear1.weight.data.normal_(mean=0.0, std=0.01)
+ self.linear1.bias.data.zero_()
+ self.linear2.weight.data.normal_(mean=0.0, std=0.01)
+ self.linear2.bias.data.zero_()
+
+ self.to(devices.device)
+
+ def forward(self, x):
+ return x + (self.linear2(self.linear1(x)))
+
+
+class Hypernetwork:
+ filename = None
+ name = None
+
+ def __init__(self, name=None):
+ self.filename = None
+ self.name = name
+ self.layers = {}
+ self.step = 0
+ self.sd_checkpoint = None
+ self.sd_checkpoint_name = None
+
+ for size in [320, 640, 768, 1280]:
+ self.layers[size] = (HypernetworkModule(size), HypernetworkModule(size))
+
+ def weights(self):
+ res = []
+
+ for k, layers in self.layers.items():
+ for layer in layers:
+ layer.train()
+ res += [layer.linear1.weight, layer.linear1.bias, layer.linear2.weight, layer.linear2.bias]
+
+ return res
+
+ def save(self, filename):
+ state_dict = {}
+
+ for k, v in self.layers.items():
+ state_dict[k] = (v[0].state_dict(), v[1].state_dict())
+
+ state_dict['step'] = self.step
+ state_dict['name'] = self.name
+ state_dict['sd_checkpoint'] = self.sd_checkpoint
+ state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
+
+ torch.save(state_dict, filename)
+
+ def load(self, filename):
+ self.filename = filename
+ if self.name is None:
+ self.name = os.path.splitext(os.path.basename(filename))[0]
+
+ state_dict = torch.load(filename, map_location='cpu')
+
+ for size, sd in state_dict.items():
+ if type(size) == int:
+ self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1]))
+
+ self.name = state_dict.get('name', self.name)
+ self.step = state_dict.get('step', 0)
+ self.sd_checkpoint = state_dict.get('sd_checkpoint', None)
+ self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)
+
+
+def list_hypernetworks(path):
+ res = {}
+ for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True):
+ name = os.path.splitext(os.path.basename(filename))[0]
+ res[name] = filename
+ return res
+
+
+def load_hypernetwork(filename):
+ path = shared.hypernetworks.get(filename, None)
+ if path is not None:
+ print(f"Loading hypernetwork {filename}")
+ try:
+ shared.loaded_hypernetwork = Hypernetwork()
+ shared.loaded_hypernetwork.load(path)
+
+ except Exception:
+ print(f"Error loading hypernetwork {path}", file=sys.stderr)
+ print(traceback.format_exc(), file=sys.stderr)
+ else:
+ if shared.loaded_hypernetwork is not None:
+ print(f"Unloading hypernetwork")
+
+ shared.loaded_hypernetwork = None
+
+
+def apply_hypernetwork(hypernetwork, context, layer=None):
+ hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
+
+ if hypernetwork_layers is None:
+ return context, context
+
+ if layer is not None:
+ layer.hyper_k = hypernetwork_layers[0]
+ layer.hyper_v = hypernetwork_layers[1]
+
+ context_k = hypernetwork_layers[0](context)
+ context_v = hypernetwork_layers[1](context)
+ return context_k, context_v
+
+
+def attention_CrossAttention_forward(self, x, context=None, mask=None):
+ h = self.heads
+
+ q = self.to_q(x)
+ context = default(context, x)
+
+ context_k, context_v = apply_hypernetwork(shared.loaded_hypernetwork, context, self)
+ k = self.to_k(context_k)
+ v = self.to_v(context_v)
+
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
+
+ sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
+
+ if mask is not None:
+ mask = rearrange(mask, 'b ... -> b (...)')
+ max_neg_value = -torch.finfo(sim.dtype).max
+ mask = repeat(mask, 'b j -> (b h) () j', h=h)
+ sim.masked_fill_(~mask, max_neg_value)
+
+ # attention, what we cannot get enough of
+ attn = sim.softmax(dim=-1)
+
+ out = einsum('b i j, b j d -> b i d', attn, v)
+ out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
+ return self.to_out(out)
+
+
+def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_image_prompt):
+ assert hypernetwork_name, 'embedding not selected'
+
+ path = shared.hypernetworks.get(hypernetwork_name, None)
+ shared.loaded_hypernetwork = Hypernetwork()
+ shared.loaded_hypernetwork.load(path)
+
+ shared.state.textinfo = "Initializing hypernetwork training..."
+ shared.state.job_count = steps
+
+ filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
+
+ log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name)
+
+ if save_hypernetwork_every > 0:
+ hypernetwork_dir = os.path.join(log_directory, "hypernetworks")
+ os.makedirs(hypernetwork_dir, exist_ok=True)
+ else:
+ hypernetwork_dir = None
+
+ if create_image_every > 0:
+ images_dir = os.path.join(log_directory, "images")
+ os.makedirs(images_dir, exist_ok=True)
+ else:
+ images_dir = None
+
+ cond_model = shared.sd_model.cond_stage_model
+
+ shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
+ with torch.autocast("cuda"):
+ ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=1, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file)
+
+ hypernetwork = shared.loaded_hypernetwork
+ weights = hypernetwork.weights()
+ for weight in weights:
+ weight.requires_grad = True
+
+ optimizer = torch.optim.AdamW(weights, lr=learn_rate)
+
+ losses = torch.zeros((32,))
+
+ last_saved_file = "<none>"
+ last_saved_image = "<none>"
+
+ ititial_step = hypernetwork.step or 0
+ if ititial_step > steps:
+ return hypernetwork, filename
+
+ pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
+ for i, (x, text) in pbar:
+ hypernetwork.step = i + ititial_step
+
+ if hypernetwork.step > steps:
+ break
+
+ if shared.state.interrupted:
+ break
+
+ with torch.autocast("cuda"):
+ c = cond_model([text])
+
+ x = x.to(devices.device)
+ loss = shared.sd_model(x.unsqueeze(0), c)[0]
+ del x
+
+ losses[hypernetwork.step % losses.shape[0]] = loss.item()
+
+ optimizer.zero_grad()
+ loss.backward()
+ optimizer.step()
+
+ pbar.set_description(f"loss: {losses.mean():.7f}")
+
+ if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0:
+ last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt')
+ hypernetwork.save(last_saved_file)
+
+ if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
+ last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png')
+
+ preview_text = text if preview_image_prompt == "" else preview_image_prompt
+
+ p = processing.StableDiffusionProcessingTxt2Img(
+ sd_model=shared.sd_model,
+ prompt=preview_text,
+ steps=20,
+ do_not_save_grid=True,
+ do_not_save_samples=True,
+ )
+
+ processed = processing.process_images(p)
+ image = processed.images[0]
+
+ shared.state.current_image = image
+ image.save(last_saved_image)
+
+ last_saved_image += f", prompt: {preview_text}"
+
+ shared.state.job_no = hypernetwork.step
+
+ shared.state.textinfo = f"""
+<p>
+Loss: {losses.mean():.7f}<br/>
+Step: {hypernetwork.step}<br/>
+Last prompt: {html.escape(text)}<br/>
+Last saved embedding: {html.escape(last_saved_file)}<br/>
+Last saved image: {html.escape(last_saved_image)}<br/>
+</p>
+"""
+
+ checkpoint = sd_models.select_checkpoint()
+
+ hypernetwork.sd_checkpoint = checkpoint.hash
+ hypernetwork.sd_checkpoint_name = checkpoint.model_name
+ hypernetwork.save(filename)
+
+ return hypernetwork, filename
+
+
diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py
new file mode 100644
index 00000000..e7540f41
--- /dev/null
+++ b/modules/hypernetworks/ui.py
@@ -0,0 +1,43 @@
+import html
+import os
+
+import gradio as gr
+
+import modules.textual_inversion.textual_inversion
+import modules.textual_inversion.preprocess
+from modules import sd_hijack, shared
+from modules.hypernetworks import hypernetwork
+
+
+def create_hypernetwork(name):
+ fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
+ assert not os.path.exists(fn), f"file {fn} already exists"
+
+ hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(name=name)
+ hypernet.save(fn)
+
+ shared.reload_hypernetworks()
+
+ return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {fn}", ""
+
+
+def train_hypernetwork(*args):
+
+ initial_hypernetwork = shared.loaded_hypernetwork
+
+ try:
+ sd_hijack.undo_optimizations()
+
+ hypernetwork, filename = modules.hypernetworks.hypernetwork.train_hypernetwork(*args)
+
+ res = f"""
+Training {'interrupted' if shared.state.interrupted else 'finished'} at {hypernetwork.step} steps.
+Hypernetwork saved to {html.escape(filename)}
+"""
+ return res, ""
+ except Exception:
+ raise
+ finally:
+ shared.loaded_hypernetwork = initial_hypernetwork
+ sd_hijack.apply_optimizations()
+
diff --git a/modules/ngrok.py b/modules/ngrok.py
new file mode 100644
index 00000000..7d03a6df
--- /dev/null
+++ b/modules/ngrok.py
@@ -0,0 +1,15 @@
+from pyngrok import ngrok, conf, exception
+
+
+def connect(token, port):
+ if token == None:
+ token = 'None'
+ conf.get_default().auth_token = token
+ try:
+ public_url = ngrok.connect(port).public_url
+ except exception.PyngrokNgrokError:
+ print(f'Invalid ngrok authtoken, ngrok connection aborted.\n'
+ f'Your token: {token}, get the right one on https://dashboard.ngrok.com/get-started/your-authtoken')
+ else:
+ print(f'ngrok connected to localhost:{port}! URL: {public_url}\n'
+ 'You can use this link after the launch is complete.')
diff --git a/modules/safe.py b/modules/safe.py
index 05917463..20be16a5 100644
--- a/modules/safe.py
+++ b/modules/safe.py
@@ -10,6 +10,7 @@ import torch
import numpy
import _codecs
import zipfile
+import re
# PyTorch 1.13 and later have _TypedStorage renamed to TypedStorage
@@ -54,11 +55,27 @@ class RestrictedUnpickler(pickle.Unpickler):
raise pickle.UnpicklingError(f"global '{module}/{name}' is forbidden")
+allowed_zip_names = ["archive/data.pkl", "archive/version"]
+allowed_zip_names_re = re.compile(r"^archive/data/\d+$")
+
+
+def check_zip_filenames(filename, names):
+ for name in names:
+ if name in allowed_zip_names:
+ continue
+ if allowed_zip_names_re.match(name):
+ continue
+
+ raise Exception(f"bad file inside {filename}: {name}")
+
+
def check_pt(filename):
try:
# new pytorch format is a zip file
with zipfile.ZipFile(filename) as z:
+ check_zip_filenames(filename, z.namelist())
+
with z.open('archive/data.pkl') as file:
unpickler = RestrictedUnpickler(file)
unpickler.load()
diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py
index 827bf304..f07ec041 100644
--- a/modules/sd_hijack.py
+++ b/modules/sd_hijack.py
@@ -8,7 +8,7 @@ from torch import einsum
from torch.nn.functional import silu
import modules.textual_inversion.textual_inversion
-from modules import prompt_parser, devices, sd_hijack_optimizations, shared, hypernetwork
+from modules import prompt_parser, devices, sd_hijack_optimizations, shared
from modules.shared import opts, device, cmd_opts
import ldm.modules.attention
@@ -37,6 +37,8 @@ def apply_optimizations():
def undo_optimizations():
+ from modules.hypernetworks import hypernetwork
+
ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
ldm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity
ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward
@@ -107,6 +109,8 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
self.tokenizer = wrapped.tokenizer
self.token_mults = {}
+ self.comma_token = [v for k, v in self.tokenizer.get_vocab().items() if k == ',</w>'][0]
+
tokens_with_parens = [(k, v) for k, v in self.tokenizer.get_vocab().items() if '(' in k or ')' in k or '[' in k or ']' in k]
for text, ident in tokens_with_parens:
mult = 1.0
@@ -136,6 +140,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
fixes = []
remade_tokens = []
multipliers = []
+ last_comma = -1
for tokens, (text, weight) in zip(tokenized, parsed):
i = 0
@@ -144,6 +149,20 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i)
+ if token == self.comma_token:
+ last_comma = len(remade_tokens)
+ elif opts.comma_padding_backtrack != 0 and max(len(remade_tokens), 1) % 75 == 0 and last_comma != -1 and len(remade_tokens) - last_comma <= opts.comma_padding_backtrack:
+ last_comma += 1
+ reloc_tokens = remade_tokens[last_comma:]
+ reloc_mults = multipliers[last_comma:]
+
+ remade_tokens = remade_tokens[:last_comma]
+ length = len(remade_tokens)
+
+ rem = int(math.ceil(length / 75)) * 75 - length
+ remade_tokens += [id_end] * rem + reloc_tokens
+ multipliers = multipliers[:last_comma] + [1.0] * rem + reloc_mults
+
if embedding is None:
remade_tokens.append(token)
multipliers.append(weight)
@@ -284,7 +303,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
while max(map(len, remade_batch_tokens)) != 0:
rem_tokens = [x[75:] for x in remade_batch_tokens]
rem_multipliers = [x[75:] for x in batch_multipliers]
-
+
self.hijack.fixes = []
for unfiltered in hijack_fixes:
fixes = []
diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py
index 18408e62..3349b9c3 100644
--- a/modules/sd_hijack_optimizations.py
+++ b/modules/sd_hijack_optimizations.py
@@ -9,6 +9,8 @@ from ldm.util import default
from einops import rearrange
from modules import shared
+from modules.hypernetworks import hypernetwork
+
if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers:
try:
@@ -26,16 +28,10 @@ def split_cross_attention_forward_v1(self, x, context=None, mask=None):
q_in = self.to_q(x)
context = default(context, x)
- hypernetwork = shared.loaded_hypernetwork
- hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
-
- if hypernetwork_layers is not None:
- k_in = self.to_k(hypernetwork_layers[0](context))
- v_in = self.to_v(hypernetwork_layers[1](context))
- else:
- k_in = self.to_k(context)
- v_in = self.to_v(context)
- del context, x
+ context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
+ k_in = self.to_k(context_k)
+ v_in = self.to_v(context_v)
+ del context, context_k, context_v, x
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
del q_in, k_in, v_in
@@ -59,22 +55,16 @@ def split_cross_attention_forward_v1(self, x, context=None, mask=None):
return self.to_out(r2)
-# taken from https://github.com/Doggettx/stable-diffusion
+# taken from https://github.com/Doggettx/stable-diffusion and modified