aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--.github/workflows/run_tests.yaml2
-rw-r--r--.gitignore3
-rw-r--r--README.md28
-rw-r--r--environment-wsl2.yaml10
-rw-r--r--extensions-builtin/LDSR/scripts/ldsr_model.py20
-rw-r--r--extensions-builtin/Lora/extra_networks_lora.py2
-rw-r--r--extensions-builtin/Lora/lora.py223
-rw-r--r--extensions-builtin/Lora/scripts/lora_script.py24
-rw-r--r--extensions-builtin/Lora/ui_extra_networks_lora.py14
-rw-r--r--extensions-builtin/ScuNET/scripts/scunet_model.py83
-rw-r--r--extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js128
-rw-r--r--html/extra-networks-card.html5
-rw-r--r--html/licenses.html245
-rw-r--r--javascript/aspectRatioOverlay.js49
-rw-r--r--javascript/contextMenus.js10
-rw-r--r--javascript/edit-attention.js40
-rw-r--r--javascript/extensions.js28
-rw-r--r--javascript/extraNetworks.js80
-rw-r--r--javascript/generationParams.js6
-rw-r--r--javascript/hints.js27
-rw-r--r--javascript/imageviewer.js97
-rw-r--r--javascript/notification.js2
-rw-r--r--javascript/progressbar.js71
-rw-r--r--javascript/ui.js44
-rw-r--r--launch.py126
-rw-r--r--models/karlo/ViT-L-14_stats.thbin0 -> 7079 bytes
-rw-r--r--modules/api/api.py222
-rw-r--r--modules/api/models.py30
-rw-r--r--modules/cmd_args.py103
-rw-r--r--modules/codeformer_model.py2
-rw-r--r--modules/config_states.py200
-rw-r--r--modules/devices.py60
-rw-r--r--modules/esrgan_model_arch.py1
-rw-r--r--modules/extensions.py80
-rw-r--r--modules/extra_networks_hypernet.py2
-rw-r--r--modules/extras.py46
-rw-r--r--modules/generation_parameters_copypaste.py33
-rw-r--r--modules/hashes.py4
-rw-r--r--modules/hypernetworks/hypernetwork.py20
-rw-r--r--modules/images.py90
-rw-r--r--modules/img2img.py23
-rw-r--r--modules/interrogate.py4
-rw-r--r--modules/lowvram.py10
-rw-r--r--modules/mac_specific.py59
-rw-r--r--modules/memmon.py12
-rw-r--r--modules/modelloader.py13
-rw-r--r--modules/models/diffusion/uni_pc/__init__.py1
-rw-r--r--modules/models/diffusion/uni_pc/sampler.py100
-rw-r--r--modules/models/diffusion/uni_pc/uni_pc.py857
-rw-r--r--modules/ngrok.py12
-rw-r--r--modules/paths.py11
-rw-r--r--modules/paths_internal.py23
-rw-r--r--modules/postprocessing.py9
-rw-r--r--modules/processing.py129
-rw-r--r--modules/realesrgan_model.py14
-rw-r--r--modules/safe.py5
-rw-r--r--modules/script_callbacks.py37
-rw-r--r--modules/scripts.py68
-rw-r--r--modules/scripts_postprocessing.py2
-rw-r--r--modules/sd_disable_initialization.py17
-rw-r--r--modules/sd_hijack.py66
-rw-r--r--modules/sd_hijack_inpainting.py1
-rw-r--r--modules/sd_hijack_optimizations.py72
-rw-r--r--modules/sd_hijack_unet.py13
-rw-r--r--modules/sd_models.py93
-rw-r--r--modules/sd_models_config.py7
-rw-r--r--modules/sd_samplers.py2
-rw-r--r--modules/sd_samplers_common.py16
-rw-r--r--modules/sd_samplers_compvis.py90
-rw-r--r--modules/sd_samplers_kdiffusion.py146
-rw-r--r--modules/sd_vae_approx.py5
-rw-r--r--modules/shared.py194
-rw-r--r--modules/shared_items.py2
-rw-r--r--modules/styles.py12
-rw-r--r--modules/textual_inversion/dataset.py58
-rw-r--r--modules/textual_inversion/preprocess.py14
-rw-r--r--modules/textual_inversion/textual_inversion.py24
-rw-r--r--modules/timer.py3
-rw-r--r--modules/ui.py273
-rw-r--r--modules/ui_common.py23
-rw-r--r--modules/ui_components.py46
-rw-r--r--modules/ui_extensions.py326
-rw-r--r--modules/ui_extra_networks.py114
-rw-r--r--modules/ui_extra_networks_checkpoints.py14
-rw-r--r--modules/ui_extra_networks_hypernets.py12
-rw-r--r--modules/ui_extra_networks_textual_inversion.py13
-rw-r--r--modules/ui_postprocessing.py8
-rw-r--r--requirements.txt5
-rw-r--r--requirements_versions.txt13
-rw-r--r--script.js8
-rw-r--r--scripts/custom_code.py63
-rw-r--r--scripts/img2imgalt.py34
-rw-r--r--scripts/loopback.py100
-rw-r--r--scripts/outpainting_mk_2.py2
-rw-r--r--scripts/poor_mans_outpainting.py2
-rw-r--r--scripts/postprocessing_upscale.py44
-rw-r--r--scripts/prompt_matrix.py26
-rw-r--r--scripts/xyz_grid.py278
-rw-r--r--style.css884
-rw-r--r--test/basic_features/extras_test.py8
-rw-r--r--test/basic_features/img2img_test.py8
-rw-r--r--test/basic_features/txt2img_test.py2
-rw-r--r--test/server_poll.py6
-rw-r--r--webui-macos-env.sh2
-rw-r--r--webui-user.sh3
-rw-r--r--webui.py166
-rwxr-xr-xwebui.sh24
107 files changed, 5219 insertions, 1772 deletions
diff --git a/.github/workflows/run_tests.yaml b/.github/workflows/run_tests.yaml
index be7ffa23..9a0b8d22 100644
--- a/.github/workflows/run_tests.yaml
+++ b/.github/workflows/run_tests.yaml
@@ -18,7 +18,7 @@ jobs:
cache-dependency-path: |
**/requirements*txt
- name: Run tests
- run: python launch.py --tests --no-half --disable-opt-split-attention --use-cpu all --skip-torch-cuda-test
+ run: python launch.py --tests test --no-half --disable-opt-split-attention --use-cpu all --skip-torch-cuda-test
- name: Upload main app stdout-stderr
uses: actions/upload-artifact@v3
if: always()
diff --git a/.gitignore b/.gitignore
index 0b1d17ca..7328401f 100644
--- a/.gitignore
+++ b/.gitignore
@@ -32,4 +32,5 @@ notification.mp3
/extensions
/test/stdout.txt
/test/stderr.txt
-/cache.json
+/cache.json*
+/config_states/
diff --git a/README.md b/README.md
index 2149dcc5..67a1a83a 100644
--- a/README.md
+++ b/README.md
@@ -13,9 +13,9 @@ A browser interface based on Gradio library for Stable Diffusion.
- Prompt Matrix
- Stable Diffusion Upscale
- Attention, specify parts of text that the model should pay more attention to
- - a man in a ((tuxedo)) - will pay more attention to tuxedo
- - a man in a (tuxedo:1.21) - alternative syntax
- - select text and press ctrl+up or ctrl+down to automatically adjust attention to selected text (code contributed by anonymous user)
+ - a man in a `((tuxedo))` - will pay more attention to tuxedo
+ - a man in a `(tuxedo:1.21)` - alternative syntax
+ - select text and press `Ctrl+Up` or `Ctrl+Down` to automatically adjust attention to selected text (code contributed by anonymous user)
- Loopback, run img2img processing multiple times
- X/Y/Z plot, a way to draw a 3 dimensional plot of images with different parameters
- Textual Inversion
@@ -28,7 +28,7 @@ A browser interface based on Gradio library for Stable Diffusion.
- CodeFormer, face restoration tool as an alternative to GFPGAN
- RealESRGAN, neural network upscaler
- ESRGAN, neural network upscaler with a lot of third party models
- - SwinIR and Swin2SR([see here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/2092)), neural network upscalers
+ - SwinIR and Swin2SR ([see here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/2092)), neural network upscalers
- LDSR, Latent diffusion super resolution upscaling
- Resizing aspect ratio options
- Sampling method selection
@@ -46,7 +46,7 @@ A browser interface based on Gradio library for Stable Diffusion.
- drag and drop an image/text-parameters to promptbox
- Read Generation Parameters Button, loads parameters in promptbox to UI
- Settings page
-- Running arbitrary python code from UI (must run with --allow-code to enable)
+- Running arbitrary python code from UI (must run with `--allow-code` to enable)
- Mouseover hints for most UI elements
- Possible to change defaults/mix/max/step values for UI elements via text config
- Tiling support, a checkbox to create images that can be tiled like textures
@@ -69,7 +69,7 @@ A browser interface based on Gradio library for Stable Diffusion.
- also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2`
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
- DeepDanbooru integration, creates danbooru style tags for anime prompts
-- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args)
+- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add `--xformers` to commandline args)
- via extension: [History tab](https://github.com/yfszzx/stable-diffusion-webui-images-browser): view, direct and delete images conveniently within the UI
- Generate forever option
- Training tab
@@ -78,11 +78,11 @@ A browser interface based on Gradio library for Stable Diffusion.
- Clip skip
- Hypernetworks
- Loras (same as Hypernetworks but more pretty)
-- A sparate UI where you can choose, with preview, which embeddings, hypernetworks or Loras to add to your prompt.
+- A sparate UI where you can choose, with preview, which embeddings, hypernetworks or Loras to add to your prompt
- Can select to load a different VAE from settings screen
- Estimated completion time in progress bar
- API
-- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML.
+- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML
- via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embeds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients))
- [Stable Diffusion 2.0](https://github.com/Stability-AI/stablediffusion) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20) for instructions
- [Alt-Diffusion](https://arxiv.org/abs/2211.06679) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#alt-diffusion) for instructions
@@ -91,7 +91,6 @@ A browser interface based on Gradio library for Stable Diffusion.
- Eased resolution restriction: generated image's domension must be a multiple of 8 rather than 64
- Now with a license!
- Reorder elements in the UI from settings screen
--
## Installation and Running
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
@@ -101,11 +100,10 @@ Alternatively, use online services (like Google Colab):
- [List of Online Services](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Online-Services)
### Automatic Installation on Windows
-1. Install [Python 3.10.6](https://www.python.org/downloads/windows/), checking "Add Python to PATH"
+1. Install [Python 3.10.6](https://www.python.org/downloads/release/python-3106/) (Newer version of Python does not support torch), checking "Add Python to PATH".
2. Install [git](https://git-scm.com/download/win).
3. Download the stable-diffusion-webui repository, for example by running `git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git`.
-4. Place stable diffusion checkpoint (`model.ckpt`) in the `models/Stable-diffusion` directory (see [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) for where to get it).
-5. Run `webui-user.bat` from Windows Explorer as normal, non-administrator, user.
+4. Run `webui-user.bat` from Windows Explorer as normal, non-administrator, user.
### Automatic Installation on Linux
1. Install the dependencies:
@@ -117,11 +115,12 @@ sudo dnf install wget git python3
# Arch-based:
sudo pacman -S wget git python3
```
-2. To install in `/home/$(whoami)/stable-diffusion-webui/`, run:
+2. Navigate to the directory you would like the webui to be installed and execute the following command:
```bash
bash <(wget -qO- https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.sh)
```
-
+3. Run `webui.sh`.
+4. Check `webui-user.sh` for options.
### Installation on Apple Silicon
Find the instructions [here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Installation-on-Apple-Silicon).
@@ -158,5 +157,6 @@ Licenses for borrowed code can be found in `Settings -> Licenses` screen, and al
- Sampling in float32 precision from a float16 UNet - marunine for the idea, Birch-san for the example Diffusers implementation (https://github.com/Birch-san/diffusers-play/tree/92feee6)
- Instruct pix2pix - Tim Brooks (star), Aleksander Holynski (star), Alexei A. Efros (no star) - https://github.com/timothybrooks/instruct-pix2pix
- Security advice - RyotaK
+- UniPC sampler - Wenliang Zhao - https://github.com/wl-zhao/UniPC
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
- (You)
diff --git a/environment-wsl2.yaml b/environment-wsl2.yaml
index f8872750..0c4ae680 100644
--- a/environment-wsl2.yaml
+++ b/environment-wsl2.yaml
@@ -4,8 +4,8 @@ channels:
- defaults
dependencies:
- python=3.10
- - pip=22.2.2
- - cudatoolkit=11.3
- - pytorch=1.12.1
- - torchvision=0.13.1
- - numpy=1.23.1 \ No newline at end of file
+ - pip=23.0
+ - cudatoolkit=11.8
+ - pytorch=2.0
+ - torchvision=0.15
+ - numpy=1.23
diff --git a/extensions-builtin/LDSR/scripts/ldsr_model.py b/extensions-builtin/LDSR/scripts/ldsr_model.py
index b8cff29b..da19cff1 100644
--- a/extensions-builtin/LDSR/scripts/ldsr_model.py
+++ b/extensions-builtin/LDSR/scripts/ldsr_model.py
@@ -25,22 +25,28 @@ class UpscalerLDSR(Upscaler):
yaml_path = os.path.join(self.model_path, "project.yaml")
old_model_path = os.path.join(self.model_path, "model.pth")
new_model_path = os.path.join(self.model_path, "model.ckpt")
- safetensors_model_path = os.path.join(self.model_path, "model.safetensors")
+
+ local_model_paths = self.find_models(ext_filter=[".ckpt", ".safetensors"])
+ local_ckpt_path = next(iter([local_model for local_model in local_model_paths if local_model.endswith("model.ckpt")]), None)
+ local_safetensors_path = next(iter([local_model for local_model in local_model_paths if local_model.endswith("model.safetensors")]), None)
+ local_yaml_path = next(iter([local_model for local_model in local_model_paths if local_model.endswith("project.yaml")]), None)
+
if os.path.exists(yaml_path):
statinfo = os.stat(yaml_path)
if statinfo.st_size >= 10485760:
print("Removing invalid LDSR YAML file.")
os.remove(yaml_path)
+
if os.path.exists(old_model_path):
print("Renaming model from model.pth to model.ckpt")
os.rename(old_model_path, new_model_path)
- if os.path.exists(safetensors_model_path):
- model = safetensors_model_path
+
+ if local_safetensors_path is not None and os.path.exists(local_safetensors_path):
+ model = local_safetensors_path
else:
- model = load_file_from_url(url=self.model_url, model_dir=self.model_path,
- file_name="model.ckpt", progress=True)
- yaml = load_file_from_url(url=self.yaml_url, model_dir=self.model_path,
- file_name="project.yaml", progress=True)
+ model = local_ckpt_path if local_ckpt_path is not None else load_file_from_url(url=self.model_url, model_dir=self.model_path, file_name="model.ckpt", progress=True)
+
+ yaml = local_yaml_path if local_yaml_path is not None else load_file_from_url(url=self.yaml_url, model_dir=self.model_path, file_name="project.yaml", progress=True)
try:
return LDSR(model, yaml)
diff --git a/extensions-builtin/Lora/extra_networks_lora.py b/extensions-builtin/Lora/extra_networks_lora.py
index 6be6ef73..45f899fc 100644
--- a/extensions-builtin/Lora/extra_networks_lora.py
+++ b/extensions-builtin/Lora/extra_networks_lora.py
@@ -8,7 +8,7 @@ class ExtraNetworkLora(extra_networks.ExtraNetwork):
def activate(self, p, params_list):
additional = shared.opts.sd_lora
- if additional != "" and additional in lora.available_loras and len([x for x in params_list if x.items[0] == additional]) == 0:
+ if additional != "None" and additional in lora.available_loras and len([x for x in params_list if x.items[0] == additional]) == 0:
p.all_prompts = [x + f"<lora:{additional}:{shared.opts.extra_networks_default_multiplier}>" for x in p.all_prompts]
params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier]))
diff --git a/extensions-builtin/Lora/lora.py b/extensions-builtin/Lora/lora.py
index cb8f1d36..d3eb0d3b 100644
--- a/extensions-builtin/Lora/lora.py
+++ b/extensions-builtin/Lora/lora.py
@@ -2,18 +2,34 @@ import glob
import os
import re
import torch
+from typing import Union
-from modules import shared, devices, sd_models
+from modules import shared, devices, sd_models, errors
-re_digits = re.compile(r"\d+")
-re_unet_down_blocks = re.compile(r"lora_unet_down_blocks_(\d+)_attentions_(\d+)_(.+)")
-re_unet_mid_blocks = re.compile(r"lora_unet_mid_block_attentions_(\d+)_(.+)")
-re_unet_up_blocks = re.compile(r"lora_unet_up_blocks_(\d+)_attentions_(\d+)_(.+)")
-re_text_block = re.compile(r"lora_te_text_model_encoder_layers_(\d+)_(.+)")
+metadata_tags_order = {"ss_sd_model_name": 1, "ss_resolution": 2, "ss_clip_skip": 3, "ss_num_train_images": 10, "ss_tag_frequency": 20}
+re_digits = re.compile(r"\d+")
+re_x_proj = re.compile(r"(.*)_([qkv]_proj)$")
+re_compiled = {}
+
+suffix_conversion = {
+ "attentions": {},
+ "resnets": {
+ "conv1": "in_layers_2",
+ "conv2": "out_layers_3",
+ "time_emb_proj": "emb_layers_1",
+ "conv_shortcut": "skip_connection",
+ }
+}
+
+
+def convert_diffusers_name_to_compvis(key, is_sd2):
+ def match(match_list, regex_text):
+ regex = re_compiled.get(regex_text)
+ if regex is None:
+ regex = re.compile(regex_text)
+ re_compiled[regex_text] = regex
-def convert_diffusers_name_to_compvis(key):
- def match(match_list, regex):
r = re.match(regex, key)
if not r:
return False
@@ -24,16 +40,33 @@ def convert_diffusers_name_to_compvis(key):
m = []
- if match(m, re_unet_down_blocks):
- return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[1]}_1_{m[2]}"
+ if match(m, r"lora_unet_down_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
+ suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
+ return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
+
+ if match(m, r"lora_unet_mid_block_(attentions|resnets)_(\d+)_(.+)"):
+ suffix = suffix_conversion.get(m[0], {}).get(m[2], m[2])
+ return f"diffusion_model_middle_block_{1 if m[0] == 'attentions' else m[1] * 2}_{suffix}"
+
+ if match(m, r"lora_unet_up_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
+ suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
+ return f"diffusion_model_output_blocks_{m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
- if match(m, re_unet_mid_blocks):
- return f"diffusion_model_middle_block_1_{m[1]}"
+ if match(m, r"lora_unet_down_blocks_(\d+)_downsamplers_0_conv"):
+ return f"diffusion_model_input_blocks_{3 + m[0] * 3}_0_op"
- if match(m, re_unet_up_blocks):
- return f"diffusion_model_output_blocks_{m[0] * 3 + m[1]}_1_{m[2]}"
+ if match(m, r"lora_unet_up_blocks_(\d+)_upsamplers_0_conv"):
+ return f"diffusion_model_output_blocks_{2 + m[0] * 3}_{2 if m[0]>0 else 1}_conv"
+
+ if match(m, r"lora_te_text_model_encoder_layers_(\d+)_(.+)"):
+ if is_sd2:
+ if 'mlp_fc1' in m[1]:
+ return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
+ elif 'mlp_fc2' in m[1]:
+ return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
+ else:
+ return f"model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
- if match(m, re_text_block):
return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}"
return key
@@ -43,6 +76,23 @@ class LoraOnDisk:
def __init__(self, name, filename):
self.name = name
self.filename = filename
+ self.metadata = {}
+
+ _, ext = os.path.splitext(filename)
+ if ext.lower() == ".safetensors":
+ try:
+ self.metadata = sd_models.read_metadata_from_safetensors(filename)
+ except Exception as e:
+ errors.display(e, f"reading lora {filename}")
+
+ if self.metadata:
+ m = {}
+ for k, v in sorted(self.metadata.items(), key=lambda x: metadata_tags_order.get(x[0], 999)):
+ m[k] = v
+
+ self.metadata = m
+
+ self.ssmd_cover_images = self.metadata.pop('ssmd_cover_images', None) # those are cover images and they are too big to display in UI as text
class LoraModule:
@@ -82,15 +132,22 @@ def load_lora(name, filename):
sd = sd_models.read_state_dict(filename)
- keys_failed_to_match = []
+ keys_failed_to_match = {}
+ is_sd2 = 'model_transformer_resblocks' in shared.sd_model.lora_layer_mapping
for key_diffusers, weight in sd.items():
- fullkey = convert_diffusers_name_to_compvis(key_diffusers)
- key, lora_key = fullkey.split(".", 1)
+ key_diffusers_without_lora_parts, lora_key = key_diffusers.split(".", 1)
+ key = convert_diffusers_name_to_compvis(key_diffusers_without_lora_parts, is_sd2)
sd_module = shared.sd_model.lora_layer_mapping.get(key, None)
+
+ if sd_module is None:
+ m = re_x_proj.match(key)
+ if m:
+ sd_module = shared.sd_model.lora_layer_mapping.get(m.group(1), None)
+
if sd_module is None:
- keys_failed_to_match.append(key_diffusers)
+ keys_failed_to_match[key_diffusers] = key
continue
lora_module = lora.modules.get(key, None)
@@ -104,15 +161,21 @@ def load_lora(name, filename):
if type(sd_module) == torch.nn.Linear:
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
+ elif type(sd_module) == torch.nn.modules.linear.NonDynamicallyQuantizableLinear:
+ module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
+ elif type(sd_module) == torch.nn.MultiheadAttention:
+ module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
elif type(sd_module) == torch.nn.Conv2d:
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
else:
+ print(f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}')
+ continue
assert False, f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}'
with torch.no_grad():
module.weight.copy_(weight)
- module.to(device=devices.device, dtype=devices.dtype)
+ module.to(device=devices.cpu, dtype=devices.dtype)
if lora_key == "lora_up.weight":
lora_module.up = module
@@ -158,28 +221,120 @@ def load_loras(names, multipliers=None):
loaded_loras.append(lora)
-def lora_forward(module, input, res):
- if len(loaded_loras) == 0:
- return res
+def lora_calc_updown(lora, module, target):
+ with torch.no_grad():
+ up = module.up.weight.to(target.device, dtype=target.dtype)
+ down = module.down.weight.to(target.device, dtype=target.dtype)
- lora_layer_name = getattr(module, 'lora_layer_name', None)
- for lora in loaded_loras:
- module = lora.modules.get(lora_layer_name, None)
- if module is not None:
- if shared.opts.lora_apply_to_outputs and res.shape == input.shape:
- res = res + module.up(module.down(res)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)
+ if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1):
+ updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3)
+ else:
+ updown = up @ down
+
+ updown = updown * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)
+
+ return updown
+
+
+def lora_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]):
+ """
+ Applies the currently selected set of Loras to the weights of torch layer self.
+ If weights already have this particular set of loras applied, does nothing.
+ If not, restores orginal weights from backup and alters weights according to loras.
+ """
+
+ lora_layer_name = getattr(self, 'lora_layer_name', None)
+ if lora_layer_name is None:
+ return
+
+ current_names = getattr(self, "lora_current_names", ())
+ wanted_names = tuple((x.name, x.multiplier) for x in loaded_loras)
+
+ weights_backup = getattr(self, "lora_weights_backup", None)
+ if weights_backup is None:
+ if isinstance(self, torch.nn.MultiheadAttention):
+ weights_backup = (self.in_proj_weight.to(devices.cpu, copy=True), self.out_proj.weight.to(devices.cpu, copy=True))
+ else:
+ weights_backup = self.weight.to(devices.cpu, copy=True)
+
+ self.lora_weights_backup = weights_backup
+
+ if current_names != wanted_names:
+ if weights_backup is not None:
+ if isinstance(self, torch.nn.MultiheadAttention):
+ self.in_proj_weight.copy_(weights_backup[0])
+ self.out_proj.weight.copy_(weights_backup[1])
else:
- res = res + module.up(module.down(input)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)
+ self.weight.copy_(weights_backup)
+
+ for lora in loaded_loras:
+ module = lora.modules.get(lora_layer_name, None)
+ if module is not None and hasattr(self, 'weight'):
+ self.weight += lora_calc_updown(lora, module, self.weight)
+ continue
+
+ module_q = lora.modules.get(lora_layer_name + "_q_proj", None)
+ module_k = lora.modules.get(lora_layer_name + "_k_proj", None)
+ module_v = lora.modules.get(lora_layer_name + "_v_proj", None)
+ module_out = lora.modules.get(lora_layer_name + "_out_proj", None)
+
+ if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out:
+ updown_q = lora_calc_updown(lora, module_q, self.in_proj_weight)
+ updown_k = lora_calc_updown(lora, module_k, self.in_proj_weight)
+ updown_v = lora_calc_updown(lora, module_v, self.in_proj_weight)
+ updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
+
+ self.in_proj_weight += updown_qkv
+ self.out_proj.weight += lora_calc_updown(lora, module_out, self.out_proj.weight)
+ continue
- return res
+ if module is None:
+ continue
+
+ print(f'failed to calculate lora weights for layer {lora_layer_name}')
+
+ setattr(self, "lora_current_names", wanted_names)
+
+
+def lora_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]):
+ setattr(self, "lora_current_names", ())
+ setattr(self, "lora_weights_backup", None)
def lora_Linear_forward(self, input):
- return lora_forward(self, input, torch.nn.Linear_forward_before_lora(self, input))
+ lora_apply_weights(self)
+
+ return torch.nn.Linear_forward_before_lora(self, input)
+
+
+def lora_Linear_load_state_dict(self, *args, **kwargs):
+ lora_reset_cached_weight(self)
+
+ return torch.nn.Linear_load_state_dict_before_lora(self, *args, **kwargs)
def lora_Conv2d_forward(self, input):
- return lora_forward(self, input, torch.nn.Conv2d_forward_before_lora(self, input))
+ lora_apply_weights(self)
+
+ return torch.nn.Conv2d_forward_before_lora(self, input)
+
+
+def lora_Conv2d_load_state_dict(self, *args, **kwargs):
+ lora_reset_cached_weight(self)
+
+ return torch.nn.Conv2d_load_state_dict_before_lora(self, *args, **kwargs)
+
+
+def lora_MultiheadAttention_forward(self, *args, **kwargs):
+ lora_apply_weights(self)
+
+ return torch.nn.MultiheadAttention_forward_before_lora(self, *args, **kwargs)
+
+
+def lora_MultiheadAttention_load_state_dict(self, *args, **kwargs):
+ lora_reset_cached_weight(self)
+
+ return torch.nn.MultiheadAttention_load_state_dict_before_lora(self, *args, **kwargs)
def list_available_loras():
@@ -192,7 +347,7 @@ def list_available_loras():
glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.safetensors'), recursive=True) + \
glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.ckpt'), recursive=True)
- for filename in sorted(candidates):
+ for filename in sorted(candidates, key=str.lower):
if os.path.isdir(filename):
continue
diff --git a/extensions-builtin/Lora/scripts/lora_script.py b/extensions-builtin/Lora/scripts/lora_script.py
index 2e860160..3fc38ab9 100644
--- a/extensions-builtin/Lora/scripts/lora_script.py
+++ b/extensions-builtin/Lora/scripts/lora_script.py
@@ -9,7 +9,11 @@ from modules import script_callbacks, ui_extra_networks, extra_networks, shared
def unload():
torch.nn.Linear.forward = torch.nn.Linear_forward_before_lora
+ torch.nn.Linear._load_from_state_dict = torch.nn.Linear_load_state_dict_before_lora
torch.nn.Conv2d.forward = torch.nn.Conv2d_forward_before_lora
+ torch.nn.Conv2d._load_from_state_dict = torch.nn.Conv2d_load_state_dict_before_lora
+ torch.nn.MultiheadAttention.forward = torch.nn.MultiheadAttention_forward_before_lora
+ torch.nn.MultiheadAttention._load_from_state_dict = torch.nn.MultiheadAttention_load_state_dict_before_lora
def before_ui():
@@ -20,11 +24,27 @@ def before_ui():
if not hasattr(torch.nn, 'Linear_forward_before_lora'):
torch.nn.Linear_forward_before_lora = torch.nn.Linear.forward
+if not hasattr(torch.nn, 'Linear_load_state_dict_before_lora'):
+ torch.nn.Linear_load_state_dict_before_lora = torch.nn.Linear._load_from_state_dict
+
if not hasattr(torch.nn, 'Conv2d_forward_before_lora'):
torch.nn.Conv2d_forward_before_lora = torch.nn.Conv2d.forward
+if not hasattr(torch.nn, 'Conv2d_load_state_dict_before_lora'):
+ torch.nn.Conv2d_load_state_dict_before_lora = torch.nn.Conv2d._load_from_state_dict
+
+if not hasattr(torch.nn, 'MultiheadAttention_forward_before_lora'):
+ torch.nn.MultiheadAttention_forward_before_lora = torch.nn.MultiheadAttention.forward
+
+if not hasattr(torch.nn, 'MultiheadAttention_load_state_dict_before_lora'):
+ torch.nn.MultiheadAttention_load_state_dict_before_lora = torch.nn.MultiheadAttention._load_from_state_dict
+
torch.nn.Linear.forward = lora.lora_Linear_forward
+torch.nn.Linear._load_from_state_dict = lora.lora_Linear_load_state_dict
torch.nn.Conv2d.forward = lora.lora_Conv2d_forward
+torch.nn.Conv2d._load_from_state_dict = lora.lora_Conv2d_load_state_dict
+torch.nn.MultiheadAttention.forward = lora.lora_MultiheadAttention_forward
+torch.nn.MultiheadAttention._load_from_state_dict = lora.lora_MultiheadAttention_load_state_dict
script_callbacks.on_model_loaded(lora.assign_lora_names_to_compvis_modules)
script_callbacks.on_script_unloaded(unload)
@@ -32,7 +52,5 @@ script_callbacks.on_before_ui(before_ui)
shared.options_templates.update(shared.options_section(('extra_networks', "Extra Networks"), {
- "sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": [""] + [x for x in lora.available_loras]}, refresh=lora.list_available_loras),
- "lora_apply_to_outputs": shared.OptionInfo(False, "Apply Lora to outputs rather than inputs when possible (experimental)"),
-
+ "sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in lora.available_loras]}, refresh=lora.list_available_loras),
}))
diff --git a/extensions-builtin/Lora/ui_extra_networks_lora.py b/extensions-builtin/Lora/ui_extra_networks_lora.py
index 22cabcb0..68b11332 100644
--- a/extensions-builtin/Lora/ui_extra_networks_lora.py
+++ b/extensions-builtin/Lora/ui_extra_networks_lora.py
@@ -15,21 +15,15 @@ class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage):
def list_items(self):
for name, lora_on_disk in lora.available_loras.items():
path, ext = os.path.splitext(lora_on_disk.filename)
- previews = [path + ".png", path + ".preview.png"]
-
- preview = None
- for file in previews:
- if os.path.isfile(file):
- preview = self.link_preview(file)
- break
-
yield {
"name": name,
"filename": path,
- "preview": preview,
+ "preview": self.find_preview(path),
+ "description": self.find_description(path),
"search_term": self.search_terms_from_path(lora_on_disk.filename),
"prompt": json.dumps(f"<lora:{name}:") + " + opts.extra_networks_default_multiplier + " + json.dumps(">"),
- "local_preview": path + ".png",
+ "local_preview": f"{path}.{shared.opts.samples_format}",
+ "metadata": json.dumps(lora_on_disk.metadata, indent=4) if lora_on_disk.metadata else None,
}
def allowed_directories_for_previews(self):
diff --git a/extensions-builtin/ScuNET/scripts/scunet_model.py b/extensions-builtin/ScuNET/scripts/scunet_model.py
index e0fbf3a3..c7fd5739 100644
--- a/extensions-builtin/ScuNET/scripts/scunet_model.py
+++ b/extensions-builtin/ScuNET/scripts/scunet_model.py
@@ -5,11 +5,15 @@ import traceback
import PIL.Image
import numpy as np
import torch
+from tqdm import tqdm
+
from basicsr.utils.download_util import load_file_from_url
import modules.upscaler
from modules import devices, modelloader
from scunet_model_arch import SCUNet as net
+from modules.shared import opts
+from modules import images
class UpscalerScuNET(modules.upscaler.Upscaler):
@@ -42,28 +46,78 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
scalers.append(scaler_data2)
self.scalers = scalers
- def do_upscale(self, img: PIL.Image, selected_file):
+ @staticmethod
+ @torch.no_grad()
+ def tiled_inference(img, model):
+ # test the image tile by tile
+ h, w = img.shape[2:]
+ tile = opts.SCUNET_tile
+ tile_overlap = opts.SCUNET_tile_overlap
+ if tile == 0:
+ return model(img)
+
+ device = devices.get_device_for('scunet')
+ assert tile % 8 == 0, "tile size should be a multiple of window_size"
+ sf = 1
+
+ stride = tile - tile_overlap
+ h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
+ w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
+ E = torch.zeros(1, 3, h * sf, w * sf, dtype=img.dtype, device=device)
+ W = torch.zeros_like(E, dtype=devices.dtype, device=device)
+
+ with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="ScuNET tiles") as pbar:
+ for h_idx in h_idx_list:
+
+ for w_idx in w_idx_list:
+
+ in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
+
+ out_patch = model(in_patch)
+ out_patch_mask = torch.ones_like(out_patch)
+
+ E[
+ ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
+ ].add_(out_patch)
+ W[
+ ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
+ ].add_(out_patch_mask)
+ pbar.update(1)
+ output = E.div_(W)
+
+ return output
+
+ def do_upscale(self, img: PIL.Image.Image, selected_file):
+
torch.cuda.empty_cache()
model = self.load_model(selected_file)
if model is None:
+ print(f"ScuNET: Unable to load model from {selected_file}", file=sys.stderr)
return img
device = devices.get_device_for('scunet')
- img = np.array(img)
- img = img[:, :, ::-1]
- img = np.moveaxis(img, 2, 0) / 255
- img = torch.from_numpy(img).float()
- img = img.unsqueeze(0).to(device)
-
- with torch.no_grad():
- output = model(img)
- output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
- output = 255. * np.moveaxis(output, 0, 2)
- output = output.astype(np.uint8)
- output = output[:, :, ::-1]
+ tile = opts.SCUNET_tile
+ h, w = img.height, img.width
+ np_img = np.array(img)
+ np_img = np_img[:, :, ::-1] # RGB to BGR
+ np_img = np_img.transpose((2, 0, 1)) / 255 # HWC to CHW
+ torch_img = torch.from_numpy(np_img).float().unsqueeze(0).to(device) # type: ignore
+
+ if tile > h or tile > w:
+ _img = torch.zeros(1, 3, max(h, tile), max(w, tile), dtype=torch_img.dtype, device=torch_img.device)
+ _img[:, :, :h, :w] = torch_img # pad image
+ torch_img = _img
+
+ torch_output = self.tiled_inference(torch_img, model).squeeze(0)
+ torch_output = torch_output[:, :h * 1, :w * 1] # remove padding, if any
+ np_output: np.ndarray = torch_output.float().cpu().clamp_(0, 1).numpy()
+ del torch_img, torch_output
torch.cuda.empty_cache()
- return PIL.Image.fromarray(output, 'RGB')
+
+ output = np_output.transpose((1, 2, 0)) # CHW to HWC
+ output = output[:, :, ::-1] # BGR to RGB
+ return PIL.Image.fromarray((output * 255).astype(np.uint8))
def load_model(self, path: str):
device = devices.get_device_for('scunet')
@@ -84,4 +138,3 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
model = model.to(device)
return model
-
diff --git a/extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js b/extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js
index 4a85c8eb..5c7a836a 100644
--- a/extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js
+++ b/extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js
@@ -1,110 +1,42 @@
// Stable Diffusion WebUI - Bracket checker
-// Version 1.0
-// By Hingashi no Florin/Bwin4L
+// By Hingashi no Florin/Bwin4L & @akx
// Counts open and closed brackets (round, square, curly) in the prompt and negative prompt text boxes in the txt2img and img2img tabs.
// If there's a mismatch, the keyword counter turns red and if you hover on it, a tooltip tells you what's wrong.
-function checkBrackets(evt, textArea, counterElt) {
- errorStringParen = '(...) - Different number of opening and closing parentheses detected.\n';
- errorStringSquare = '[...] - Different number of opening and closing square brackets detected.\n';
- errorStringCurly = '{...} - Different number of opening and closing curly brackets detected.\n';
-
- openBracketRegExp = /\(/g;
- closeBracketRegExp = /\)/g;
-
- openSquareBracketRegExp = /\[/g;
- closeSquareBracketRegExp = /\]/g;
-
- openCurlyBracketRegExp = /\{/g;
- closeCurlyBracketRegExp = /\}/g;
-
- totalOpenBracketMatches = 0;
- totalCloseBracketMatches = 0;
- totalOpenSquareBracketMatches = 0;
- totalCloseSquareBracketMatches = 0;
- totalOpenCurlyBracketMatches = 0;
- totalCloseCurlyBracketMatches = 0;
-
- openBracketMatches = textArea.value.match(openBracketRegExp);
- if(openBracketMatches) {
- totalOpenBracketMatches = openBracketMatches.length;
- }
-
- closeBracketMatches = textArea.value.match(closeBracketRegExp);
- if(closeBracketMatches) {
- totalCloseBracketMatches = closeBracketMatches.length;
- }
-
- openSquareBracketMatches = textArea.value.match(openSquareBracketRegExp);
- if(openSquareBracketMatches) {
- totalOpenSquareBracketMatches = openSquareBracketMatches.length;
- }
-
- closeSquareBracketMatches = textArea.value.match(closeSquareBracketRegExp);
- if(closeSquareBracketMatches) {
- totalCloseSquareBracketMatches = closeSquareBracketMatches.length;
- }
-
- openCurlyBracketMatches = textArea.value.match(openCurlyBracketRegExp);
- if(openCurlyBracketMatches) {
- totalOpenCurlyBracketMatches = openCurlyBracketMatches.length;
- }
-
- closeCurlyBracketMatches = textArea.value.match(closeCurlyBracketRegExp);
- if(closeCurlyBracketMatches) {
- totalCloseCurlyBracketMatches = closeCurlyBracketMatches.length;
- }
-
- if(totalOpenBracketMatches != totalCloseBracketMatches) {
- if(!counterElt.title.includes(errorStringParen)) {
- counterElt.title += errorStringParen;
+function checkBrackets(textArea, counterElt) {
+ var counts = {};
+ (textArea.value.match(/[(){}\[\]]/g) || []).forEach(bracket => {
+ counts[bracket] = (counts[bracket] || 0) + 1;
+ });
+ var errors = [];
+
+ function checkPair(open, close, kind) {
+ if (counts[open] !== counts[close]) {
+ errors.push(
+ `${open}...${close} - Detected ${counts[open] || 0} opening and ${counts[close] || 0} closing ${kind}.`
+ );
}
- } else {
- counterElt.title = counterElt.title.replace(errorStringParen, '');
}
- if(totalOpenSquareBracketMatches != totalCloseSquareBracketMatches) {
- if(!counterElt.title.includes(errorStringSquare)) {
- counterElt.title += errorStringSquare;
- }
- } else {
- counterElt.title = counterElt.title.replace(errorStringSquare, '');
- }
+ checkPair('(', ')', 'round brackets');
+ checkPair('[', ']', 'square brackets');
+ checkPair('{', '}', 'curly brackets');
+ counterElt.title = errors.join('\n');
+ counterElt.classList.toggle('error', errors.length !== 0);
+}
- if(totalOpenCurlyBracketMatches != totalCloseCurlyBracketMatches) {
- if(!counterElt.title.includes(errorStringCurly)) {
- counterElt.title += errorStringCurly;
- }
- } else {
- counterElt.title = counterElt.title.replace(errorStringCurly, '');
- }
+function setupBracketChecking(id_prompt, id_counter) {
+ var textarea = gradioApp().querySelector("#" + id_prompt + " > label > textarea");
+ var counter = gradioApp().getElementById(id_counter)
- if(counterElt.title != '') {
- counterElt.classList.add('error');
- } else {
- counterElt.classList.remove('error');
+ if (textarea && counter) {
+ textarea.addEventListener("input", () => checkBrackets(textarea, counter));
}
}
-function setupBracketChecking(id_prompt, id_counter){
- var textarea = gradioApp().querySelector("#" + id_prompt + " > label > textarea");
- var counter = gradioApp().getElementById(id_counter)
- textarea.addEventListener("input", function(evt){
- checkBrackets(evt, textarea, counter)
- });
-}
-
-var shadowRootLoaded = setInterval(function() {
- var shadowRoot = document.querySelector('gradio-app').shadowRoot;
- if(! shadowRoot) return false;
-
- var shadowTextArea = shadowRoot.querySelectorAll('#txt2img_prompt > label > textarea');
- if(shadowTextArea.length < 1) return false;
-
- clearInterval(shadowRootLoaded);
-
- setupBracketChecking('txt2img_prompt', 'txt2img_token_counter')
- setupBracketChecking('txt2img_neg_prompt', 'txt2img_negative_token_counter')
- setupBracketChecking('img2img_prompt', 'imgimg_token_counter')
- setupBracketChecking('img2img_neg_prompt', 'img2img_negative_token_counter')
-}, 1000);
+onUiLoaded(function () {
+ setupBracketChecking('txt2img_prompt', 'txt2img_token_counter');
+ setupBracketChecking('txt2img_neg_prompt', 'txt2img_negative_token_counter');
+ setupBracketChecking('img2img_prompt', 'img2img_token_counter');
+ setupBracketChecking('img2img_neg_prompt', 'img2img_negative_token_counter');
+});
diff --git a/html/extra-networks-card.html b/html/extra-networks-card.html
index 8a5e2fbd..ef4b613a 100644
--- a/html/extra-networks-card.html
+++ b/html/extra-networks-card.html
@@ -1,4 +1,6 @@
-<div class='card' {preview_html} onclick={card_clicked}>
+<div class='card' style={style} onclick={card_clicked}>
+ {metadata_button}
+
<div class='actions'>
<div class='additional'>
<ul>
@@ -7,6 +9,7 @@
<span style="display:none" class='search_term'>{search_term}</span>
</div>
<span class='name'>{name}</span>
+ <span class='description'>{description}</span>
</div>
</div>
diff --git a/html/licenses.html b/html/licenses.html
index 570630eb..bc995aa0 100644
--- a/html/licenses.html
+++ b/html/licenses.html
@@ -417,3 +417,248 @@ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
</pre>
+<h2><a href="https://github.com/huggingface/diffusers/blob/c7da8fd23359a22d0df2741688b5b4f33c26df21/LICENSE">Scaled Dot Product Attention</a></h2>
+<small>Some small amounts of code borrowed and reworked.</small>
+<pre>
+ Copyright 2023 The HuggingFace Team. All rights reserved.
+
+ Licensed under the Apache License, Version 2.0 (the "License");
+ you may not use this file except in compliance with the License.
+ You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+ Unless required by applicable law or agreed to in writing, software
+ distributed under the License is distributed on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ See the License for the specific language governing permissions and
+ limitations under the License.
+
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+ 1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+ 2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+ 3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+ 4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+ 6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+ 7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+ 8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+ 9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+ END OF TERMS AND CONDITIONS
+
+ APPENDIX: How to apply the Apache License to your work.
+
+ To apply the Apache License to your work, attach the following
+ boilerplate notice, with the fields enclosed by brackets "[]"
+ replaced with your own identifying information. (Don't include
+ the brackets!) The text should be enclosed in the appropriate
+ comment syntax for the file format. We also recommend that a
+ file or class name and description of purpose be included on the
+ same "printed page" as the copyright notice for easier
+ identification within third-party archives.
+
+ Copyright [yyyy] [name of copyright owner]
+
+ Licensed under the Apache License, Version 2.0 (the "License");
+ you may not use this file except in compliance with the License.
+ You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+ Unless required by applicable law or agreed to in writing, software
+ distributed under the License is distributed on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ See the License for the specific language governing permissions and
+ limitations under the License.
+</pre>
+
+<h2><a href="https://github.com/explosion/curated-transformers/blob/main/LICENSE">Curated transformers</a></h2>
+<small>The MPS workaround for nn.Linear on macOS 13.2.X is based on the MPS workaround for nn.Linear created by danieldk for Curated transformers</small>
+<pre>
+The MIT License (MIT)
+
+Copyright (C) 2021 ExplosionAI GmbH
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in
+all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+THE SOFTWARE.
+</pre> \ No newline at end of file
diff --git a/javascript/aspectRatioOverlay.js b/javascript/aspectRatioOverlay.js
index 0f164b82..a8278cca 100644
--- a/javascript/aspectRatioOverlay.js
+++ b/javascript/aspectRatioOverlay.js
@@ -12,7 +12,7 @@ function dimensionChange(e, is_width, is_height){
currentHeight = e.target.value*1.0
}
- var inImg2img = Boolean(gradioApp().querySelector("button.rounded-t-lg.border-gray-200"))
+ var inImg2img = gradioApp().querySelector("#tab_img2img").style.display == "block";
if(!inImg2img){
return;
@@ -22,7 +22,7 @@ function dimensionChange(e, is_width, is_height){
var tabIndex = get_tab_index('mode_img2img')
if(tabIndex == 0){ // img2img
- targetElement = gradioApp().querySelector('div[data-testid=image] img');
+ targetElement = gradioApp().querySelector('#img2img_image div[data-testid=image] img');
} else if(tabIndex == 1){ //Sketch
targetElement = gradioApp().querySelector('#img2img_sketch div[data-testid=image] img');
} else if(tabIndex == 2){ // Inpaint
@@ -30,7 +30,7 @@ function dimensionChange(e, is_width, is_height){
} else if(tabIndex == 3){ // Inpaint sketch
targetElement = gradioApp().querySelector('#inpaint_sketch div[data-testid=image] img');
}
-
+
if(targetElement){
@@ -38,7 +38,7 @@ function dimensionChange(e, is_width, is_height){
if(!arPreviewRect){
arPreviewRect = document.createElement('div')
arPreviewRect.id = "imageARPreview";
- gradioApp().getRootNode().appendChild(arPreviewRect)
+ gradioApp().appendChild(arPreviewRect)
}
@@ -91,23 +91,26 @@ onUiUpdate(function(){
if(arPreviewRect){
arPreviewRect.style.display = 'none';
}
- var inImg2img = Boolean(gradioApp().querySelector("button.rounded-t-lg.border-gray-200"))
- if(inImg2img){
- let inputs = gradioApp().querySelectorAll('input');
- inputs.forEach(function(e){
- var is_width = e.parentElement.id == "img2img_width"
- var is_height = e.parentElement.id == "img2img_height"
-
- if((is_width || is_height) && !e.classList.contains('scrollwatch')){
- e.addEventListener('input', function(e){dimensionChange(e, is_width, is_height)} )
- e.classList.add('scrollwatch')
- }
- if(is_width){
- currentWidth = e.value*1.0
- }
- if(is_height){
- currentHeight = e.value*1.0
- }
- })
- }
+ var tabImg2img = gradioApp().querySelector("#tab_img2img");
+ if (tabImg2img) {
+ var inImg2img = tabImg2img.style.display == "block";
+ if(inImg2img){
+ let inputs = gradioApp().querySelectorAll('input');
+ inputs.forEach(function(e){
+ var is_width = e.parentElement.id == "img2img_width"
+ var is_height = e.parentElement.id == "img2img_height"
+
+ if((is_width || is_height) && !e.classList.contains('scrollwatch')){
+ e.addEventListener('input', function(e){dimensionChange(e, is_width, is_height)} )
+ e.classList.add('scrollwatch')
+ }
+ if(is_width){
+ currentWidth = e.value*1.0
+ }
+ if(is_height){
+ currentHeight = e.value*1.0
+ }
+ })
+ }
+ }
});
diff --git a/javascript/contextMenus.js b/javascript/contextMenus.js
index 11bcce1b..9468c107 100644
--- a/javascript/contextMenus.js
+++ b/javascript/contextMenus.js
@@ -43,7 +43,7 @@ contextMenuInit = function(){
})
- gradioApp().getRootNode().appendChild(contextMenu)
+ gradioApp().appendChild(contextMenu)
let menuWidth = contextMenu.offsetWidth + 4;
let menuHeight = contextMenu.offsetHeight + 4;
@@ -161,14 +161,6 @@ addContextMenuEventListener = initResponse[2];
appendContextMenuOption('#img2img_interrupt','Cancel generate forever',cancelGenerateForever)
appendContextMenuOption('#img2img_generate', 'Cancel generate forever',cancelGenerateForever)
- appendContextMenuOption('#roll','Roll three',
- function(){
- let rollbutton = get_uiCurrentTabContent().querySelector('#roll');
- setTimeout(function(){rollbutton.click()},100)
- setTimeout(function(){rollbutton.click()},200)
- setTimeout(function(){rollbutton.click()},300)
- }
- )
})();
//End example Context Menu Items
diff --git a/javascript/edit-attention.js b/javascript/edit-attention.js
index 619bb1fa..588c7b77 100644
--- a/javascript/edit-attention.js
+++ b/javascript/edit-attention.js
@@ -1,6 +1,6 @@
function keyupEditAttention(event){
let target = event.originalTarget || event.composedPath()[0];
- if (!target.matches("[id*='_toprow'] textarea.gr-text-input[placeholder]")) return;
+ if (! target.matches("[id*='_toprow'] [id*='_prompt'] textarea")) return;
if (! (event.metaKey || event.ctrlKey)) return;
let isPlus = event.key == "ArrowUp"
@@ -17,7 +17,7 @@ function keyupEditAttention(event){
// Find opening parenthesis around current cursor
const before = text.substring(0, selectionStart);
let beforeParen = before.lastIndexOf(OPEN);
- if (beforeParen == -1) return false;
+ if (beforeParen == -1) return false;
let beforeParenClose = before.lastIndexOf(CLOSE);
while (beforeParenClose !== -1 && beforeParenClose > beforeParen) {
beforeParen = before.lastIndexOf(OPEN, beforeParen - 1);
@@ -27,7 +27,7 @@ function keyupEditAttention(event){
// Find closing parenthesis around current cursor
const after = text.substring(selectionStart);
let afterParen = after.indexOf(CLOSE);
- if (afterParen == -1) return false;
+ if (afterParen == -1) return false;
let afterParenOpen = after.indexOf(OPEN);
while (afterParenOpen !== -1 && afterParen > afterParenOpen) {
afterParen = after.indexOf(CLOSE, afterParen + 1);
@@ -43,10 +43,28 @@ function keyupEditAttention(event){
target.setSelectionRange(selectionStart, selectionEnd);
return true;
}
+
+ function selectCurrentWord(){
+ if (selectionStart !== selectionEnd) return false;
+ const delimiters = opts.keyedit_delimiters + " \r\n\t";
+
+ // seek backward until to find beggining
+ while (!delimiters.includes(text[selectionStart - 1]) && selectionStart > 0) {
+ selectionStart--;
+ }
+
+ // seek forward to find end
+ while (!delimiters.includes(text[selectionEnd]) && selectionEnd < text.length) {
+ selectionEnd++;
+ }
- // If the user hasn't selected anything, let's select their current parenthesis block
- if(! selectCurrentParenthesisBlock('<', '>')){
- selectCurrentParenthesisBlock('(', ')')
+ target.setSelectionRange(selectionStart, selectionEnd);
+ return true;
+ }
+
+ // If the user hasn't selected anything, let's select their current parenthesis block or word
+ if (!selectCurrentParenthesisBlock('<', '>') && !selectCurrentParenthesisBlock('(', ')')) {
+ selectCurrentWord();
}
event.preventDefault();
@@ -81,7 +99,13 @@ function keyupEditAttention(event){
weight = parseFloat(weight.toPrecision(12));
if(String(weight).length == 1) weight += ".0"
- text = text.slice(0, selectionEnd + 1) + weight + text.slice(selectionEnd + 1 + end - 1);
+ if (closeCharacter == ')' && weight == 1) {
+ text = text.slice(0, selectionStart - 1) + text.slice(selectionStart, selectionEnd) + text.slice(selectionEnd + 5);
+ selectionStart--;
+ selectionEnd--;
+ } else {
+ text = text.slice(0, selectionEnd + 1) + weight + text.slice(selectionEnd + 1 + end - 1);
+ }
target.focus();
target.value = text;
@@ -93,4 +117,4 @@ function keyupEditAttention(event){
addEventListener('keydown', (event) => {
keyupEditAttention(event);
-}); \ No newline at end of file
+});
diff --git a/javascript/extensions.js b/javascript/extensions.js
index c593cd2e..3c2f995a 100644
--- a/javascript/extensions.js
+++ b/javascript/extensions.js
@@ -1,5 +1,5 @@
-function extensions_apply(_, _){
+function extensions_apply(_, _, disable_all){
var disable = []
var update = []
@@ -13,10 +13,10 @@ function extensions_apply(_, _){
restart_reload()
- return [JSON.stringify(disable), JSON.stringify(update)]
+ return [JSON.stringify(disable), JSON.stringify(update), disable_all]
}
-function extensions_check(){
+function extensions_check(_, _){
var disable = []
gradioApp().querySelectorAll('#extensions input[type="checkbox"]').forEach(function(x){
@@ -47,3 +47,25 @@ function install_extension_from_index(button, url){
gradioApp().querySelector('#install_extension_button').click()
}
+
+function config_state_confirm_restore(_, config_state_name, config_restore_type) {
+ if (config_state_name == "Current") {
+ return [false, config_state_name, config_restore_type];
+ }
+ let restored = "";
+ if (config_restore_type == "extensions") {
+ restored = "all saved extension versions";
+ } else if (config_restore_type == "webui") {
+ restored = "the webui version";
+ } else {
+ restored = "the webui version and all saved extension versions";
+ }
+ let confirmed = confirm("Are you sure you want to restore from this state?\nThis will reset " + restored + ".");
+ if (confirmed) {
+ restart_reload();
+ gradioApp().querySelectorAll('#extensions .extension_status').forEach(function(x){
+ x.innerHTML = "Loading..."
+ })
+ }
+ return [confirmed, config_state_name, config_restore_type];
+}
diff --git a/javascript/extraNetworks.js b/javascript/extraNetworks.js
index 17bf2000..25322138 100644
--- a/javascript/extraNetworks.js
+++ b/javascript/extraNetworks.js
@@ -5,12 +5,10 @@ function setupExtraNetworksForTab(tabname){
var tabs = gradioApp().querySelector('#'+tabname+'_extra_tabs > div')
var search = gradioApp().querySelector('#'+tabname+'_extra_search textarea')
var refresh = gradioApp().getElementById(tabname+'_extra_refresh')
- var close = gradioApp().getElementById(tabname+'_extra_close')
search.classList.add('search')
tabs.appendChild(search)
tabs.appendChild(refresh)
- tabs.appendChild(close)
search.addEventListener("input", function(evt){
searchTerm = search.value.toLowerCase()
@@ -78,7 +76,7 @@ function cardClicked(tabname, textToAdd, allowNegativePrompt){
var textarea = allowNegativePrompt ? activePromptTextarea[tabname] : gradioApp().querySelector("#" + tabname + "_prompt > label > textarea")
if(! tryToRemoveExtraNetworkFromPrompt(textarea, textToAdd)){
- textarea.value = textarea.value + " " + textToAdd
+ textarea.value = textarea.value + opts.extra_networks_add_text_separator + textToAdd
}
updateInput(textarea)
@@ -104,4 +102,78 @@ function extraNetworksSearchButton(tabs_id, event){
searchTextarea.value = text
updateInput(searchTextarea)
-} \ No newline at end of file
+}
+
+var globalPopup = null;
+var globalPopupInner = null;
+function popup(contents){
+ if(! globalPopup){
+ globalPopup = document.createElement('div')
+ globalPopup.onclick = function(){ globalPopup.style.display = "none"; };
+ globalPopup.classList.add('global-popup');
+
+ var close = document.createElement('div')
+ close.classList.add('global-popup-close');
+ close.onclick = function(){ globalPopup.style.display = "none"; };
+ close.title = "Close";
+ globalPopup.appendChild(close)
+
+ globalPopupInner = document.createElement('div')
+ globalPopupInner.onclick = function(event){ event.stopPropagation(); return false; };
+ globalPopupInner.classList.add('global-popup-inner');
+ globalPopup.appendChild(globalPopupInner)
+
+ gradioApp().appendChild(globalPopup);
+ }
+
+ globalPopupInner.innerHTML = '';
+ globalPopupInner.appendChild(contents);
+
+ globalPopup.style.display = "flex";
+}
+
+function extraNetworksShowMetadata(text){
+ elem = document.createElement('pre')
+ elem.classList.add('popup-metadata');
+ elem.textContent = text;
+
+ popup(elem);
+}
+
+function requestGet(url, data, handler, errorHandler){
+ var xhr = new XMLHttpRequest();
+ var args = Object.keys(data).map(function(k){ return encodeURIComponent(k) + '=' + encodeURIComponent(data[k]) }).join('&')
+ xhr.open("GET", url + "?" + args, true);
+
+ xhr.onreadystatechange = function () {
+ if (xhr.readyState === 4) {
+ if (xhr.status === 200) {
+ try {
+ var js = JSON.parse(xhr.responseText);
+ handler(js)
+ } catch (error) {
+ console.error(error);
+ errorHandler()
+ }
+ } else{
+ errorHandler()
+ }
+ }
+ };
+ var js = JSON.stringify(data);
+ xhr.send(js);
+}
+
+function extraNetworksRequestMetadata(event, extraPage, cardName){
+ showError = function(){ extraNetworksShowMetadata("there was an error getting metadata"); }
+
+ requestGet("./sd_extra_networks/metadata", {"page": extraPage, "item": cardName}, function(data){
+ if(data && data.metadata){
+ extraNetworksShowMetadata(data.metadata)
+ } else{
+ showError()
+ }
+ }, showError)
+
+ event.stopPropagation()
+}
diff --git a/javascript/generationParams.js b/javascript/generationParams.js
index 95f05093..1266a266 100644
--- a/javascript/generationParams.js
+++ b/javascript/generationParams.js
@@ -16,9 +16,9 @@ onUiUpdate(function(){
let modalObserver = new MutationObserver(function(mutations) {
mutations.forEach(function(mutationRecord) {
- let selectedTab = gradioApp().querySelector('#tabs div button.bg-white')?.innerText
- if (mutationRecord.target.style.display === 'none' && selectedTab === 'txt2img' || selectedTab === 'img2img')
- gradioApp().getElementById(selectedTab+"_generation_info_button").click()
+ let selectedTab = gradioApp().querySelector('#tabs div button.selected')?.innerText
+ if (mutationRecord.target.style.display === 'none' && (selectedTab === 'txt2img' || selectedTab === 'img2img'))
+ gradioApp().getElementById(selectedTab+"_generation_info_button")?.click()
});
});
diff --git a/javascript/hints.js b/javascript/hints.js
index 75792d0d..fa023585 100644
--- a/javascript/hints.js
+++ b/javascript/hints.js
@@ -6,10 +6,11 @@ titles = {
"GFPGAN": "Restore low quality faces using GFPGAN neural network",
"Euler a": "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps higher than 30-40 does not help",
"DDIM": "Denoising Diffusion Implicit Models - best at inpainting",
+ "UniPC": "Unified Predictor-Corrector Framework for Fast Sampling of Diffusion Models",
"DPM adaptive": "Ignores step count - uses a number of steps determined by the CFG and resolution",
- "Batch count": "How many batches of images to create",
- "Batch size": "How many image to create in a single batch",
+ "Batch count": "How many batches of images to create (has no impact on generation performance or VRAM usage)",
+ "Batch size": "How many image to create in a single batch (increases generation performance at cost of higher VRAM usage)",
"CFG Scale": "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results",
"Seed": "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result",
"\u{1f3b2}\ufe0f": "Set seed to -1, which will cause a new random number to be used every time",
@@ -17,11 +18,10 @@ titles = {
"\u2199\ufe0f": "Read generation parameters from prompt or last generation if prompt is empty into user interface.",
"\u{1f4c2}": "Open images output directory",
"\u{1f4be}": "Save style",
- "\u{1f5d1}": "Clear prompt",
+ "\u{1f5d1}\ufe0f": "Clear prompt",
"\u{1f4cb}": "Apply selected styles to current prompt",
"\u{1f4d2}": "Paste available values into the field",
- "\u{1f3b4}": "Show extra networks",
-
+ "\u{1f3b4}": "Show/hide extra networks",
"Inpaint a part of image": "Draw a mask over an image, and the script will regenerate the masked area with content according to prompt",
"SD upscale": "Upscale image normally, split result into tiles, improve each tile using img2img, merge whole image back",
@@ -39,8 +39,7 @@ titles = {
"Inpaint at full resolution": "Upscale masked region to target resolution, do inpainting, downscale back and paste into original image",
"Denoising strength": "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.",
- "Denoising strength change factor": "In loopback mode, on each loop the denoising strength is multiplied by this value. <1 means decreasing variety so your sequence will converge on a fixed picture. >1 means increasing variety so your sequence will become more and more chaotic.",
-
+
"Skip": "Stop processing current image and continue processing.",
"Interrupt": "Stop processing images and return any results accumulated so far.",
"Save": "Write image to a directory (default - log/images) and generation parameters into csv file.",
@@ -66,12 +65,14 @@ titles = {
"Interrogate": "Reconstruct prompt from existing image and put it into the prompt field.",
- "Images filename pattern": "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [model_name], [prompt_words], [date], [datetime], [datetime<Format>], [datetime<Format><Time Zone>], [job_timestamp]; leave empty for default.",
- "Directory name pattern": "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [model_name], [prompt_words], [date], [datetime], [datetime<Format>], [datetime<Format><Time Zone>], [job_timestamp]; leave empty for default.",
+ "Images filename pattern": "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt_hash], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [model_name], [prompt_words], [date], [datetime], [datetime<Format>], [datetime<Format><Time Zone>], [job_timestamp], [hasprompt<prompt1|default><prompt2>..]; leave empty for default.",
+ "Directory name pattern": "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg],[prompt_hash], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [model_name], [prompt_words], [date], [datetime], [datetime<Format>], [datetime<Format><Time Zone>], [job_timestamp], [hasprompt<prompt1|default><prompt2>..]; leave empty for default.",
"Max prompt words": "Set the maximum number of words to be used in the [prompt_words] option; ATTENTION: If the words are too long, they may exceed the maximum length of the file path that the system can handle",
- "Loopback": "Process an image, use it as an input, repeat.",
- "Loops": "How many times to repeat processing an image and using it as input for the next iteration",
+ "Loopback": "Performs img2img processing multiple times. Output images are used as input for the next loop.",
+ "Loops": "How many times to process an image. Each output is used as the input of the next loop. If set to 1, behavior will be as if this script were not used.",
+ "Final denoising strength": "The denoising strength for the final loop of each image in the batch.",
+ "Denoising strength curve": "The denoising curve controls the rate of denoising strength change each loop. Aggressive: Most of the change will happen towards the start of the loops. Linear: Change will be constant through all loops. Lazy: Most of the change will happen towards the end of the loops.",
"Style 1": "Style to apply; styles have components for both positive and negative prompts and apply to both",
"Style 2": "Style to apply; styles have components for both positive and negative prompts and apply to both",
@@ -84,7 +85,6 @@ titles = {
"vram": "Torch active: Peak amount of VRAM used by Torch during generation, excluding cached data.\nTorch reserved: Peak amount of VRAM allocated by Torch, including all active and cached data.\nSys VRAM: Peak amount of VRAM allocation across all applications / total GPU VRAM (peak utilization%).",
"Eta noise seed delta": "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.",
- "Do not add watermark to images": "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.",
"Filename word regex": "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.",
"Filename join string": "This string will be used to join split words into a single line if the option above is enabled.",
@@ -110,7 +110,8 @@ titles = {
"Resize height to": "Resizes image to this height. If 0, height is inferred from either of two nearby sliders.",
"Multiplier for extra networks": "When adding extra network such as Hypernetwork or Lora to prompt, use this multiplier for it.",
"Discard weights with matching name": "Regular expression; if weights's name matches it, the weights is not written to the resulting checkpoint. Use ^model_ema to discard EMA weights.",
- "Extra networks tab order": "Comma-separated list of tab names; tabs listed here will appear in the extra networks UI first and in order lsited."
+ "Extra networks tab order": "Comma-separated list of tab names; tabs listed here will appear in the extra networks UI first and in order lsited.",
+ "Negative Guidance minimum sigma": "Skip negative prompt for steps where image is already mostly denoised; the higher this value, the more skips there will be; provides increased performance in exchange for minor quality reduction."
}
diff --git a/javascript/imageviewer.js b/javascript/imageviewer.js
index aac2ee82..3deffa9b 100644
--- a/javascript/imageviewer.js
+++ b/javascript/imageviewer.js
@@ -11,7 +11,7 @@ function showModal(event) {
if (modalImage.style.display === 'none') {
lb.style.setProperty('background-image', 'url(' + source.src + ')');
}
- lb.style.display = "block";
+ lb.style.display = "flex";
lb.focus()
const tabTxt2Img = gradioApp().getElementById("tab_txt2img")
@@ -32,13 +32,7 @@ function negmod(n, m) {
function updateOnBackgroundChange() {
const modalImage = gradioApp().getElementById("modalImage")
if (modalImage && modalImage.offsetParent) {
- let allcurrentButtons = gradioApp().querySelectorAll(".gallery-item.transition-all.\\!ring-2")
- let currentButton = null
- allcurrentButtons.forEach(function(elem) {
- if (elem.parentElement.offsetParent) {
- currentButton = elem;
- }
- })
+ let currentButton = selected_gallery_button();
if (currentButton?.children?.length > 0 && modalImage.src != currentButton.children[0].src) {
modalImage.src = currentButton.children[0].src;
@@ -50,22 +44,10 @@ function updateOnBackgroundChange() {
}
function modalImageSwitch(offset) {
- var allgalleryButtons = gradioApp().querySelectorAll(".gallery-item.transition-all")
- var galleryButtons = []
- allgalleryButtons.forEach(function(elem) {
- if (elem.parentElement.offsetParent) {
- galleryButtons.push(elem);
- }
- })
+ var galleryButtons = all_gallery_buttons();
if (galleryButtons.length > 1) {
- var allcurrentButtons = gradioApp().querySelectorAll(".gallery-item.transition-all.\\!ring-2")
- var currentButton = null
- allcurrentButtons.forEach(function(elem) {
- if (elem.parentElement.offsetParent) {
- currentButton = elem;
- }
- })
+ var currentButton = selected_gallery_button();
var result = -1
galleryButtons.forEach(function(v, i) {
@@ -136,37 +118,29 @@ function modalKeyHandler(event) {
}
}
-function showGalleryImage() {
- setTimeout(function() {
- fullImg_preview = gradioApp().querySelectorAll('img.w-full.object-contain')
-
- if (fullImg_preview != null) {
- fullImg_preview.forEach(function function_name(e) {
- if (e.dataset.modded)
- return;
- e.dataset.modded = true;
- if(e && e.parentElement.tagName == 'DIV'){
- e.style.cursor='pointer'
- e.style.userSelect='none'
-
- var isFirefox = isFirefox = navigator.userAgent.toLowerCase().indexOf('firefox') > -1
-
- // For Firefox, listening on click first switched to next image then shows the lightbox.
- // If you know how to fix this without switching to mousedown event, please.
- // For other browsers the event is click to make it possiblr to drag picture.
- var event = isFirefox ? 'mousedown' : 'click'
-
- e.addEventListener(event, function (evt) {
- if(!opts.js_modal_lightbox || evt.button != 0) return;
- modalZoomSet(gradioApp().getElementById('modalImage'), opts.js_modal_lightbox_initially_zoomed)
- evt.preventDefault()
- showModal(evt)
- }, true);
- }
- });
- }
+function setupImageForLightbox(e) {
+ if (e.dataset.modded)
+ return;
+
+ e.dataset.modded = true;
+ e.style.cursor='pointer'
+ e.style.userSelect='none'
+
+ var isFirefox = navigator.userAgent.toLowerCase().indexOf('firefox') > -1
+
+ // For Firefox, listening on click first switched to next image then shows the lightbox.
+ // If you know how to fix this without switching to mousedown event, please.
+ // For other browsers the event is click to make it possiblr to drag picture.
+ var event = isFirefox ? 'mousedown' : 'click'
+
+ e.addEventListener(event, function (evt) {
+ if(!opts.js_modal_lightbox || evt.button != 0) return;
+
+ modalZoomSet(gradioApp().getElementById('modalImage'), opts.js_modal_lightbox_initially_zoomed)
+ evt.preventDefault()
+ showModal(evt)
+ }, true);
- }, 100);
}
function modalZoomSet(modalImage, enable) {
@@ -199,21 +173,21 @@ function modalTileImageToggle(event) {
}
function galleryImageHandler(e) {
- if (e && e.parentElement.tagName == 'BUTTON') {
+ //if (e && e.parentElement.tagName == 'BUTTON') {
e.onclick = showGalleryImage;
- }
+ //}
}
onUiUpdate(function() {
- fullImg_preview = gradioApp().querySelectorAll('img.w-full')
+ fullImg_preview = gradioApp().querySelectorAll('.gradio-gallery > div > img')
if (fullImg_preview != null) {
- fullImg_preview.forEach(galleryImageHandler);
+ fullImg_preview.forEach(setupImageForLightbox);
}
updateOnBackgroundChange();
})
document.addEventListener("DOMContentLoaded", function() {
- const modalFragment = document.createDocumentFragment();
+ //const modalFragment = document.createDocumentFragment();
const modal = document.createElement('div')
modal.onclick = closeModal;
modal.id = "lightboxModal";
@@ -277,9 +251,12 @@ document.addEventListener("DOMContentLoaded", function() {
modal.appendChild(modalNext)
+ try {
+ gradioApp().appendChild(modal);
+ } catch (e) {
+ gradioApp().body.appendChild(modal);
+ }
- gradioApp().getRootNode().appendChild(modal)
-
- document.body.appendChild(modalFragment);
+ document.body.appendChild(modal);
});
diff --git a/javascript/notification.js b/javascript/notification.js
index 040a3afa..8ddd4c5d 100644
--- a/javascript/notification.js
+++ b/javascript/notification.js
@@ -15,7 +15,7 @@ onUiUpdate(function(){
}
}
- const galleryPreviews = gradioApp().querySelectorAll('div[id^="tab_"][style*="display: block"] img.h-full.w-full.overflow-hidden');
+ const galleryPreviews = gradioApp().querySelectorAll('div[id^="tab_"][style*="display: block"] div[id$="_results"] .thumbnail-item > img');
if (galleryPreviews == null) return;
diff --git a/javascript/progressbar.js b/javascript/progressbar.js
index ff6d757b..8df3f569 100644
--- a/javascript/progressbar.js
+++ b/javascript/progressbar.js
@@ -1,78 +1,13 @@
// code related to showing and updating progressbar shown as the image is being made
-
-galleries = {}
-storedGallerySelections = {}
-galleryObservers = {}
-
function rememberGallerySelection(id_gallery){
- storedGallerySelections[id_gallery] = getGallerySelectedIndex(id_gallery)
-}
-function getGallerySelectedIndex(id_gallery){
- let galleryButtons = gradioApp().querySelectorAll('#'+id_gallery+' .gallery-item')
- let galleryBtnSelected = gradioApp().querySelector('#'+id_gallery+' .gallery-item.\\!ring-2')
-
- let currentlySelectedIndex = -1
- galleryButtons.forEach(function(v, i){ if(v==galleryBtnSelected) { currentlySelectedIndex = i } })
-
- return currentlySelectedIndex
}
-// this is a workaround for https://github.com/gradio-app/gradio/issues/2984
-function check_gallery(id_gallery){
- let gallery = gradioApp().getElementById(id_gallery)
- // if gallery has no change, no need to setting up observer again.
- if (gallery && galleries[id_gallery] !== gallery){
- galleries[id_gallery] = gallery;
- if(galleryObservers[id_gallery]){
- galleryObservers[id_gallery].disconnect();
- }
+function getGallerySelectedIndex(id_gallery){
- storedGallerySelections[id_gallery] = -1
-
- galleryObservers[id_gallery] = new MutationObserver(function (){
- let galleryButtons = gradioApp().querySelectorAll('#'+id_gallery+' .gallery-item')
- let galleryBtnSelected = gradioApp().querySelector('#'+id_gallery+' .gallery-item.\\!ring-2')
- let currentlySelectedIndex = getGallerySelectedIndex(id_gallery)
- prevSelectedIndex = storedGallerySelections[id_gallery]
- storedGallerySelections[id_gallery] = -1
-
- if (prevSelectedIndex !== -1 && galleryButtons.length>prevSelectedIndex && !galleryBtnSelected) {
- // automatically re-open previously selected index (if exists)
- activeElement = gradioApp().activeElement;
- let scrollX = window.scrollX;
- let scrollY = window.scrollY;
-
- galleryButtons[prevSelectedIndex].click();
- showGalleryImage();
-
- // When the gallery button is clicked, it gains focus and scrolls itself into view
- // We need to scroll back to the previous position
- setTimeout(function (){
- window.scrollTo(scrollX, scrollY);
- }, 50);
-
- if(activeElement){
- // i fought this for about an hour; i don't know why the focus is lost or why this helps recover it
- // if someone has a better solution please by all means
- setTimeout(function (){
- activeElement.focus({
- preventScroll: true // Refocus the element that was focused before the gallery was opened without scrolling to it
- })
- }, 1);
- }
- }
- })
- galleryObservers[id_gallery].observe( gallery, { childList:true, subtree:false })
- }
}
-onUiUpdate(function(){
- check_gallery('txt2img_gallery')
- check_gallery('img2img_gallery')
-})
-
function request(url, data, handler, errorHandler){
var xhr = new XMLHttpRequest();
var url = url;
@@ -139,7 +74,7 @@ function requestProgress(id_task, progressbarContainer, gallery, atEnd, onProgre
var divProgress = document.createElement('div')
divProgress.className='progressDiv'
- divProgress.style.display = opts.show_progressbar ? "" : "none"
+ divProgress.style.display = opts.show_progressbar ? "block" : "none"
var divInner = document.createElement('div')
divInner.className='progress'
@@ -203,7 +138,7 @@ function requestProgress(id_task, progressbarContainer, gallery, atEnd, onProgre
return
}
- if(elapsedFromStart > 5 && !res.queued && !res.active){
+ if(elapsedFromStart > 40 && !res.queued && !res.active){
removeProgressBar()
return
}
diff --git a/javascript/ui.js b/javascript/ui.js
index b7a8268a..dc538231 100644
--- a/javascript/ui.js
+++ b/javascript/ui.js
@@ -7,9 +7,31 @@ function set_theme(theme){
}
}
+function all_gallery_buttons() {
+ var allGalleryButtons = gradioApp().querySelectorAll('[style="display: block;"].tabitem div[id$=_gallery].gradio-gallery .thumbnails > .thumbnail-item.thumbnail-small');
+ var visibleGalleryButtons = [];
+ allGalleryButtons.forEach(function(elem) {
+ if (elem.parentElement.offsetParent) {
+ visibleGalleryButtons.push(elem);
+ }
+ })
+ return visibleGalleryButtons;
+}
+
+function selected_gallery_button() {
+ var allCurrentButtons = gradioApp().querySelectorAll('[style="display: block;"].tabitem div[id$=_gallery].gradio-gallery .thumbnail-item.thumbnail-small.selected');
+ var visibleCurrentButton = null;
+ allCurrentButtons.forEach(function(elem) {
+ if (elem.parentElement.offsetParent) {
+ visibleCurrentButton = elem;
+ }
+ })
+ return visibleCurrentButton;
+}
+
function selected_gallery_index(){
- var buttons = gradioApp().querySelectorAll('[style="display: block;"].tabitem div[id$=_gallery] .gallery-item')
- var button = gradioApp().querySelector('[style="display: block;"].tabitem div[id$=_gallery] .gallery-item.\\!ring-2')
+ var buttons = all_gallery_buttons();
+ var button = selected_gallery_button();
var result = -1
buttons.forEach(function(v, i){ if(v==button) { result = i } })
@@ -18,14 +40,18 @@ function selected_gallery_index(){
}
function extract_image_from_gallery(gallery){
- if(gallery.length == 1){
- return [gallery[0]]
+ if (gallery.length == 0){
+ return [null];
+ }
+ if (gallery.length == 1){
+ return [gallery[0]];
}
index = selected_gallery_index()
if (index < 0 || index >= gallery.length){
- return [null]
+ // Use the first image in the gallery as the default
+ index = 0;
}
return [gallery[index]];
@@ -86,7 +112,7 @@ function get_tab_index(tabId){
var res = 0
gradioApp().getElementById(tabId).querySelector('div').querySelectorAll('button').forEach(function(button, i){
- if(button.className.indexOf('bg-white') != -1)
+ if(button.className.indexOf('selected') != -1)
res = i
})
@@ -255,7 +281,6 @@ onUiUpdate(function(){
}
prompt.parentElement.insertBefore(counter, prompt)
- counter.classList.add("token-counter")
prompt.parentElement.style.position = "relative"
promptTokecountUpdateFuncs[id] = function(){ update_token_counter(id_button); }
@@ -336,3 +361,8 @@ function selectCheckpoint(name){
desiredCheckpointName = name;
gradioApp().getElementById('change_checkpoint').click()
}
+
+function currentImg2imgSourceResolution(_, _, scaleBy){
+ var img = gradioApp().querySelector('#mode_img2img > div[style="display: block;"] img')
+ return img ? [img.naturalWidth, img.naturalHeight, scaleBy] : [0, 0, scaleBy]
+}
diff --git a/launch.py b/launch.py
index 9fd766d1..e043e156 100644
--- a/launch.py
+++ b/launch.py
@@ -5,16 +5,24 @@ import sys
import importlib.util
import shlex
import platform
-import argparse
import json
-dir_repos = "repositories"
-dir_extensions = "extensions"
+from modules import cmd_args
+from modules.paths_internal import script_path, extensions_dir
+
+commandline_args = os.environ.get('COMMANDLINE_ARGS', "")
+sys.argv += shlex.split(commandline_args)
+
+args, _ = cmd_args.parser.parse_known_args()
+
python = sys.executable
git = os.environ.get('GIT', "git")
index_url = os.environ.get('INDEX_URL', "")
stored_commit_hash = None
-skip_install = False
+dir_repos = "repositories"
+
+if 'GRADIO_ANALYTICS_ENABLED' not in os.environ:
+ os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
def check_python_version():
@@ -40,7 +48,7 @@ or any other error regarding unsuccessful package (library) installation,
please downgrade (or upgrade) to the latest version of 3.10 Python
and delete current Python and "venv" folder in WebUI's directory.
-You can download 3.10 Python from here: https://www.python.org/downloads/release/python-3109/
+You can download 3.10 Python from here: https://www.python.org/downloads/release/python-3106/
{"Alternatively, use a binary release of WebUI: https://github.com/AUTOMATIC1111/stable-diffusion-webui/releases" if is_windows else ""}
@@ -62,23 +70,6 @@ def commit_hash():
return stored_commit_hash
-def extract_arg(args, name):
- return [x for x in args if x != name], name in args
-
-
-def extract_opt(args, name):
- opt = None
- is_present = False
- if name in args:
- is_present = True
- idx = args.index(name)
- del args[idx]
- if idx < len(args) and args[idx][0] != "-":
- opt = args[idx]
- del args[idx]
- return args, is_present, opt
-
-
def run(command, desc=None, errdesc=None, custom_env=None, live=False):
if desc is not None:
print(desc)
@@ -122,19 +113,19 @@ def is_installed(package):
def repo_dir(name):
- return os.path.join(dir_repos, name)
+ return os.path.join(script_path, dir_repos, name)
def run_python(code, desc=None, errdesc=None):
return run(f'"{python}" -c "{code}"', desc, errdesc)
-def run_pip(args, desc=None):
- if skip_install:
+def run_pip(command, desc=None, live=False):
+ if args.skip_install:
return
index_url_line = f' --index-url {index_url}' if index_url != '' else ''
- return run(f'"{python}" -m pip {args} --prefer-binary{index_url_line}', desc=f"Installing {desc}", errdesc=f"Couldn't install {desc}")
+ return run(f'"{python}" -m pip {command} --prefer-binary{index_url_line}', desc=f"Installing {desc}", errdesc=f"Couldn't install {desc}", live=live)
def check_run_python(code):
@@ -161,7 +152,17 @@ def git_clone(url, dir, name, commithash=None):
if commithash is not None:
run(f'"{git}" -C "{dir}" checkout {commithash}', None, "Couldn't checkout {name}'s hash: {commithash}")
-
+
+def git_pull_recursive(dir):
+ for subdir, _, _ in os.walk(dir):
+ if os.path.exists(os.path.join(subdir, '.git')):
+ try:
+ output = subprocess.check_output([git, '-C', subdir, 'pull', '--autostash'])
+ print(f"Pulled changes for repository in '{subdir}':\n{output.decode('utf-8').strip()}\n")
+ except subprocess.CalledProcessError as e:
+ print(f"Couldn't perform 'git pull' on repository in '{subdir}':\n{e.output.decode('utf-8').strip()}\n")
+
+
def version_check(commit):
try:
import requests
@@ -204,26 +205,27 @@ def list_extensions(settings_file):
print(e, file=sys.stderr)
disabled_extensions = set(settings.get('disabled_extensions', []))
+ disable_all_extensions = settings.get('disable_all_extensions', 'none')
- return [x for x in os.listdir(dir_extensions) if x not in disabled_extensions]
+ if disable_all_extensions != 'none':
+ return []
+
+ return [x for x in os.listdir(extensions_dir) if x not in disabled_extensions]
def run_extensions_installers(settings_file):
- if not os.path.isdir(dir_extensions):
+ if not os.path.isdir(extensions_dir):
return
for dirname_extension in list_extensions(settings_file):
- run_extension_installer(os.path.join(dir_extensions, dirname_extension))
+ run_extension_installer(os.path.join(extensions_dir, dirname_extension))
def prepare_environment():
- global skip_install
-
- torch_command = os.environ.get('TORCH_COMMAND', "pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 --extra-index-url https://download.pytorch.org/whl/cu117")
+ torch_command = os.environ.get('TORCH_COMMAND', "pip install torch==2.0.0 torchvision==0.15.1 --index-url https://download.pytorch.org/whl/cu118")
requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt")
- commandline_args = os.environ.get('COMMANDLINE_ARGS', "")
- xformers_package = os.environ.get('XFORMERS_PACKAGE', 'xformers==0.0.16rc425')
+ xformers_package = os.environ.get('XFORMERS_PACKAGE', 'xformers==0.0.17')
gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379")
clip_package = os.environ.get('CLIP_PACKAGE', "git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1")
openclip_package = os.environ.get('OPENCLIP_PACKAGE', "git+https://github.com/mlfoundations/open_clip.git@bb6e834e9c70d9c27d0dc3ecedeebeaeb1ffad6b")
@@ -234,30 +236,13 @@ def prepare_environment():
codeformer_repo = os.environ.get('CODEFORMER_REPO', 'https://github.com/sczhou/CodeFormer.git')
blip_repo = os.environ.get('BLIP_REPO', 'https://github.com/salesforce/BLIP.git')
- stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "47b6b607fdd31875c9279cd2f4f16b92e4ea958e")
+ stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "cf1d67a6fd5ea1aa600c4df58e5b47da45f6bdbf")
taming_transformers_commit_hash = os.environ.get('TAMING_TRANSFORMERS_COMMIT_HASH', "24268930bf1dce879235a7fddd0b2355b84d7ea6")
k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "5b3af030dd83e0297272d861c19477735d0317ec")
codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af")
blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9")
- sys.argv += shlex.split(commandline_args)
-
- parser = argparse.ArgumentParser()
- parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default='config.json')
- args, _ = parser.parse_known_args(sys.argv)
-
- sys.argv, _ = extract_arg(sys.argv, '-f')
- sys.argv, skip_torch_cuda_test = extract_arg(sys.argv, '--skip-torch-cuda-test')
- sys.argv, skip_python_version_check = extract_arg(sys.argv, '--skip-python-version-check')
- sys.argv, reinstall_xformers = extract_arg(sys.argv, '--reinstall-xformers')
- sys.argv, reinstall_torch = extract_arg(sys.argv, '--reinstall-torch')
- sys.argv, update_check = extract_arg(sys.argv, '--update-check')
- sys.argv, run_tests, test_dir = extract_opt(sys.argv, '--tests')
- sys.argv, skip_install = extract_arg(sys.argv, '--skip-install')
- xformers = '--xformers' in sys.argv
- ngrok = '--ngrok' in sys.argv
-
- if not skip_python_version_check:
+ if not args.skip_python_version_check:
check_python_version()
commit = commit_hash()
@@ -265,10 +250,10 @@ def prepare_environment():
print(f"Python {sys.version}")
print(f"Commit hash: {commit}")
- if reinstall_torch or not is_installed("torch") or not is_installed("torchvision"):
+ if args.reinstall_torch or not is_installed("torch") or not is_installed("torchvision"):
run(f'"{python}" -m {torch_command}', "Installing torch and torchvision", "Couldn't install torch", live=True)
- if not skip_torch_cuda_test:
+ if not args.skip_torch_cuda_test:
run_python("import torch; assert torch.cuda.is_available(), 'Torch is not able to use GPU; add --skip-torch-cuda-test to COMMANDLINE_ARGS variable to disable this check'")
if not is_installed("gfpgan"):
@@ -280,10 +265,10 @@ def prepare_environment():
if not is_installed("open_clip"):
run_pip(f"install {openclip_package}", "open_clip")
- if (not is_installed("xformers") or reinstall_xformers) and xformers:
+ if (not is_installed("xformers") or args.reinstall_xformers) and args.xformers:
if platform.system() == "Windows":
if platform.python_version().startswith("3.10"):
- run_pip(f"install -U -I --no-deps {xformers_package}", "xformers")
+ run_pip(f"install -U -I --no-deps {xformers_package}", "xformers", live=True)
else:
print("Installation of xformers is not supported in this version of Python.")
print("You can also check this and build manually: https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers#building-xformers-on-windows-by-duckness")
@@ -292,10 +277,10 @@ def prepare_environment():
elif platform.system() == "Linux":
run_pip(f"install {xformers_package}", "xformers")
- if not is_installed("pyngrok") and ngrok:
+ if not is_installed("pyngrok") and args.ngrok:
run_pip("install pyngrok", "ngrok")
- os.makedirs(dir_repos, exist_ok=True)
+ os.makedirs(os.path.join(script_path, dir_repos), exist_ok=True)
git_clone(stable_diffusion_repo, repo_dir('stable-diffusion-stability-ai'), "Stable Diffusion", stable_diffusion_commit_hash)
git_clone(taming_transformers_repo, repo_dir('taming-transformers'), "Taming Transformers", taming_transformers_commit_hash)
@@ -304,21 +289,26 @@ def prepare_environment():
git_clone(blip_repo, repo_dir('BLIP'), "BLIP", blip_commit_hash)
if not is_installed("lpips"):
- run_pip(f"install -r {os.path.join(repo_dir('CodeFormer'), 'requirements.txt')}", "requirements for CodeFormer")
+ run_pip(f"install -r \"{os.path.join(repo_dir('CodeFormer'), 'requirements.txt')}\"", "requirements for CodeFormer")
- run_pip(f"install -r {requirements_file}", "requirements for Web UI")
+ if not os.path.isfile(requirements_file):
+ requirements_file = os.path.join(script_path, requirements_file)
+ run_pip(f"install -r \"{requirements_file}\"", "requirements")
run_extensions_installers(settings_file=args.ui_settings_file)
- if update_check:
+ if args.update_check:
version_check(commit)
+
+ if args.update_all_extensions:
+ git_pull_recursive(extensions_dir)
if "--exit" in sys.argv:
print("Exiting because of --exit argument")
exit(0)
- if run_tests:
- exitcode = tests(test_dir)
+ if args.tests and not args.no_tests:
+ exitcode = tests(args.tests)
exit(exitcode)
@@ -327,16 +317,18 @@ def tests(test_dir):
sys.argv.append("--api")
if "--ckpt" not in sys.argv:
sys.argv.append("--ckpt")
- sys.argv.append("./test/test_files/empty.pt")
+ sys.argv.append(os.path.join(script_path, "test/test_files/empty.pt"))
if "--skip-torch-cuda-test" not in sys.argv:
sys.argv.append("--skip-torch-cuda-test")
if "--disable-nan-check" not in sys.argv:
sys.argv.append("--disable-nan-check")
+ if "--no-tests" not in sys.argv:
+ sys.argv.append("--no-tests")
print(f"Launching Web UI in another process for testing with arguments: {' '.join(sys.argv[1:])}")
os.environ['COMMANDLINE_ARGS'] = ""
- with open('test/stdout.txt', "w", encoding="utf8") as stdout, open('test/stderr.txt', "w", encoding="utf8") as stderr:
+ with open(os.path.join(script_path, 'test/stdout.txt'), "w", encoding="utf8") as stdout, open(os.path.join(script_path, 'test/stderr.txt'), "w", encoding="utf8") as stderr:
proc = subprocess.Popen([sys.executable, *sys.argv], stdout=stdout, stderr=stderr)
import test.server_poll
diff --git a/models/karlo/ViT-L-14_stats.th b/models/karlo/ViT-L-14_stats.th
new file mode 100644
index 00000000..a6a06e94
--- /dev/null
+++ b/models/karlo/ViT-L-14_stats.th
Binary files differ
diff --git a/modules/api/api.py b/modules/api/api.py
index eb7b1da5..9ffcbd5f 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -3,11 +3,14 @@ import io
import time
import datetime
import uvicorn
+import gradio as gr
from threading import Lock
from io import BytesIO
-from gradio.processing_utils import decode_base64_to_file
-from fastapi import APIRouter, Depends, FastAPI, HTTPException, Request, Response
+from fastapi import APIRouter, Depends, FastAPI, Request, Response
from fastapi.security import HTTPBasic, HTTPBasicCredentials
+from fastapi.exceptions import HTTPException
+from fastapi.responses import JSONResponse
+from fastapi.encoders import jsonable_encoder
from secrets import compare_digest
import modules.shared as shared
@@ -18,7 +21,7 @@ from modules.textual_inversion.textual_inversion import create_embedding, train_
from modules.textual_inversion.preprocess import preprocess
from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork
from PIL import PngImagePlugin,Image
-from modules.sd_models import checkpoints_list
+from modules.sd_models import checkpoints_list, unload_model_weights, reload_model_weights
from modules.sd_models_config import find_checkpoint_config_near_filename
from modules.realesrgan_model import get_realesrgan_models
from modules import devices
@@ -90,6 +93,16 @@ def encode_pil_to_base64(image):
return base64.b64encode(bytes_data)
def api_middleware(app: FastAPI):
+ rich_available = True
+ try:
+ import anyio # importing just so it can be placed on silent list
+ import starlette # importing just so it can be placed on silent list
+ from rich.console import Console
+ console = Console()
+ except:
+ import traceback
+ rich_available = False
+
@app.middleware("http")
async def log_and_time(req: Request, call_next):
ts = time.time()
@@ -110,6 +123,36 @@ def api_middleware(app: FastAPI):
))
return res
+ def handle_exception(request: Request, e: Exception):
+ err = {
+ "error": type(e).__name__,
+ "detail": vars(e).get('detail', ''),
+ "body": vars(e).get('body', ''),
+ "errors": str(e),
+ }
+ print(f"API error: {request.method}: {request.url} {err}")
+ if not isinstance(e, HTTPException): # do not print backtrace on known httpexceptions
+ if rich_available:
+ console.print_exception(show_locals=True, max_frames=2, extra_lines=1, suppress=[anyio, starlette], word_wrap=False, width=min([console.width, 200]))
+ else:
+ traceback.print_exc()
+ return JSONResponse(status_code=vars(e).get('status_code', 500), content=jsonable_encoder(err))
+
+ @app.middleware("http")
+ async def exception_handling(request: Request, call_next):
+ try:
+ return await call_next(request)
+ except Exception as e:
+ return handle_exception(request, e)
+
+ @app.exception_handler(Exception)
+ async def fastapi_exception_handler(request: Request, e: Exception):
+ return handle_exception(request, e)
+
+ @app.exception_handler(HTTPException)
+ async def http_exception_handler(request: Request, e: HTTPException):
+ return handle_exception(request, e)
+
class Api:
def __init__(self, app: FastAPI, queue_lock: Lock):
@@ -150,6 +193,12 @@ class Api:
self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=TrainResponse)
self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=TrainResponse)
self.add_api_route("/sdapi/v1/memory", self.get_memory, methods=["GET"], response_model=MemoryResponse)
+ self.add_api_route("/sdapi/v1/unload-checkpoint", self.unloadapi, methods=["POST"])
+ self.add_api_route("/sdapi/v1/reload-checkpoint", self.reloadapi, methods=["POST"])
+ self.add_api_route("/sdapi/v1/scripts", self.get_scripts_list, methods=["GET"], response_model=ScriptsList)
+
+ self.default_script_arg_txt2img = []
+ self.default_script_arg_img2img = []
def add_api_route(self, path: str, endpoint, **kwargs):
if shared.cmd_opts.api_auth:
@@ -163,47 +212,113 @@ class Api:
raise HTTPException(status_code=401, detail="Incorrect username or password", headers={"WWW-Authenticate": "Basic"})
- def get_script(self, script_name, script_runner):
- if script_name is None:
+ def get_selectable_script(self, script_name, script_runner):
+ if script_name is None or script_name == "":
return None, None
- if not script_runner.scripts:
- script_runner.initialize_scripts(False)
- ui.create_ui()
-
script_idx = script_name_to_index(script_name, script_runner.selectable_scripts)
script = script_runner.selectable_scripts[script_idx]
return script, script_idx
+
+ def get_scripts_list(self):
+ t2ilist = [str(title.lower()) for title in scripts.scripts_txt2img.titles]
+ i2ilist = [str(title.lower()) for title in scripts.scripts_img2img.titles]
+
+ return ScriptsList(txt2img = t2ilist, img2img = i2ilist)
+
+ def get_script(self, script_name, script_runner):
+ if script_name is None or script_name == "":
+ return None, None
+
+ script_idx = script_name_to_index(script_name, script_runner.scripts)
+ return script_runner.scripts[script_idx]
+
+ def init_default_script_args(self, script_runner):
+ #find max idx from the scripts in runner and generate a none array to init script_args
+ last_arg_index = 1
+ for script in script_runner.scripts:
+ if last_arg_index < script.args_to:
+ last_arg_index = script.args_to
+ # None everywhere except position 0 to initialize script args
+ script_args = [None]*last_arg_index
+ script_args[0] = 0
+
+ # get default values
+ with gr.Blocks(): # will throw errors calling ui function without this
+ for script in script_runner.scripts:
+ if script.ui(script.is_img2img):
+ ui_default_values = []
+ for elem in script.ui(script.is_img2img):
+ ui_default_values.append(elem.value)
+ script_args[script.args_from:script.args_to] = ui_default_values
+ return script_args
+
+ def init_script_args(self, request, default_script_args, selectable_scripts, selectable_idx, script_runner):
+ script_args = default_script_args.copy()
+ # position 0 in script_arg is the idx+1 of the selectable script that is going to be run when using scripts.scripts_*2img.run()
+ if selectable_scripts:
+ script_args[selectable_scripts.args_from:selectable_scripts.args_to] = request.script_args
+ script_args[0] = selectable_idx + 1
+
+ # Now check for always on scripts
+ if request.alwayson_scripts and (len(request.alwayson_scripts) > 0):
+ for alwayson_script_name in request.alwayson_scripts.keys():
+ alwayson_script = self.get_script(alwayson_script_name, script_runner)
+ if alwayson_script == None:
+ raise HTTPException(status_code=422, detail=f"always on script {alwayson_script_name} not found")
+ # Selectable script in always on script param check
+ if alwayson_script.alwayson == False:
+ raise HTTPException(status_code=422, detail=f"Cannot have a selectable script in the always on scripts params")
+ # always on script with no arg should always run so you don't really need to add them to the requests
+ if "args" in request.alwayson_scripts[alwayson_script_name]:
+ # min between arg length in scriptrunner and arg length in the request
+ for idx in range(0, min((alwayson_script.args_to - alwayson_script.args_from), len(request.alwayson_scripts[alwayson_script_name]["args"]))):
+ script_args[alwayson_script.args_from + idx] = request.alwayson_scripts[alwayson_script_name]["args"][idx]
+ return script_args
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
- script, script_idx = self.get_script(txt2imgreq.script_name, scripts.scripts_txt2img)
+ script_runner = scripts.scripts_txt2img
+ if not script_runner.scripts:
+ script_runner.initialize_scripts(False)
+ ui.create_ui()
+ if not self.default_script_arg_txt2img:
+ self.default_script_arg_txt2img = self.init_default_script_args(script_runner)
+ selectable_scripts, selectable_script_idx = self.get_selectable_script(txt2imgreq.script_name, script_runner)
- populate = txt2imgreq.copy(update={ # Override __init__ params
+ populate = txt2imgreq.copy(update={ # Override __init__ params
"sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index),
- "do_not_save_samples": True,
- "do_not_save_grid": True
- }
- )
+ "do_not_save_samples": not txt2imgreq.save_images,
+ "do_not_save_grid": not txt2imgreq.save_images,
+ })
if populate.sampler_name:
populate.sampler_index = None # prevent a warning later on
args = vars(populate)
args.pop('script_name', None)
+ args.pop('script_args', None) # will refeed them to the pipeline directly after initializing them
+ args.pop('alwayson_scripts', None)
+
+ script_args = self.init_script_args(txt2imgreq, self.default_script_arg_txt2img, selectable_scripts, selectable_script_idx, script_runner)
+
+ send_images = args.pop('send_images', True)
+ args.pop('save_images', None)
with self.queue_lock:
p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)
+ p.scripts = script_runner
+ p.outpath_grids = opts.outdir_txt2img_grids
+ p.outpath_samples = opts.outdir_txt2img_samples
shared.state.begin()
- if script is not None:
- p.outpath_grids = opts.outdir_txt2img_grids
- p.outpath_samples = opts.outdir_txt2img_samples
- p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args
- processed = scripts.scripts_txt2img.run(p, *p.script_args)
+ if selectable_scripts != None:
+ p.script_args = script_args
+ processed = scripts.scripts_txt2img.run(p, *p.script_args) # Need to pass args as list here
else:
+ p.script_args = tuple(script_args) # Need to pass args as tuple here
processed = process_images(p)
shared.state.end()
- b64images = list(map(encode_pil_to_base64, processed.images))
+ b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else []
return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
@@ -212,41 +327,55 @@ class Api:
if init_images is None:
raise HTTPException(status_code=404, detail="Init image not found")
- script, script_idx = self.get_script(img2imgreq.script_name, scripts.scripts_img2img)
-
mask = img2imgreq.mask
if mask:
mask = decode_base64_to_image(mask)
- populate = img2imgreq.copy(update={ # Override __init__ params
+ script_runner = scripts.scripts_img2img
+ if not script_runner.scripts:
+ script_runner.initialize_scripts(True)
+ ui.create_ui()
+ if not self.default_script_arg_img2img:
+ self.default_script_arg_img2img = self.init_default_script_args(script_runner)
+ selectable_scripts, selectable_script_idx = self.get_selectable_script(img2imgreq.script_name, script_runner)
+
+ populate = img2imgreq.copy(update={ # Override __init__ params
"sampler_name": validate_sampler_name(img2imgreq.sampler_name or img2imgreq.sampler_index),
- "do_not_save_samples": True,
- "do_not_save_grid": True,
- "mask": mask
- }
- )
+ "do_not_save_samples": not img2imgreq.save_images,
+ "do_not_save_grid": not img2imgreq.save_images,
+ "mask": mask,
+ })
if populate.sampler_name:
populate.sampler_index = None # prevent a warning later on
args = vars(populate)
args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine.
args.pop('script_name', None)
+ args.pop('script_args', None) # will refeed them to the pipeline directly after initializing them
+ args.pop('alwayson_scripts', None)
+
+ script_args = self.init_script_args(img2imgreq, self.default_script_arg_img2img, selectable_scripts, selectable_script_idx, script_runner)
+
+ send_images = args.pop('send_images', True)
+ args.pop('save_images', None)
with self.queue_lock:
p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)
p.init_images = [decode_base64_to_image(x) for x in init_images]
+ p.scripts = script_runner
+ p.outpath_grids = opts.outdir_img2img_grids
+ p.outpath_samples = opts.outdir_img2img_samples
shared.state.begin()
- if script is not None:
- p.outpath_grids = opts.outdir_img2img_grids
- p.outpath_samples = opts.outdir_img2img_samples
- p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args
- processed = scripts.scripts_img2img.run(p, *p.script_args)
+ if selectable_scripts != None:
+ p.script_args = script_args
+ processed = scripts.scripts_img2img.run(p, *p.script_args) # Need to pass args as list here
else:
+ p.script_args = tuple(script_args) # Need to pass args as tuple here
processed = process_images(p)
shared.state.end()
- b64images = list(map(encode_pil_to_base64, processed.images))
+ b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else []
if not img2imgreq.include_init_images:
img2imgreq.init_images = None
@@ -267,16 +396,11 @@ class Api:
def extras_batch_images_api(self, req: ExtrasBatchImagesRequest):
reqDict = setUpscalers(req)
- def prepareFiles(file):
- file = decode_base64_to_file(file.data, file_path=file.name)
- file.orig_name = file.name
- return file
-
- reqDict['image_folder'] = list(map(prepareFiles, reqDict['imageList']))
- reqDict.pop('imageList')
+ image_list = reqDict.pop('imageList', [])
+ image_folder = [decode_base64_to_image(x.data) for x in image_list]
with self.queue_lock:
- result = postprocessing.run_extras(extras_mode=1, image="", input_dir="", output_dir="", save_output=False, **reqDict)
+ result = postprocessing.run_extras(extras_mode=1, image_folder=image_folder, image="", input_dir="", output_dir="", save_output=False, **reqDict)
return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1])
@@ -348,6 +472,16 @@ class Api:
return {}
+ def unloadapi(self):
+ unload_model_weights()
+
+ return {}
+
+ def reloadapi(self):
+ reload_model_weights()
+
+ return {}
+
def skip(self):
shared.state.skip()
@@ -498,7 +632,7 @@ class Api:
if not apply_optimizations:
sd_hijack.undo_optimizations()
try:
- hypernetwork, filename = train_hypernetwork(*args)
+ hypernetwork, filename = train_hypernetwork(**args)
except Exception as e:
error = e
finally:
diff --git a/modules/api/models.py b/modules/api/models.py
index cba43d3b..4a70f440 100644
--- a/modules/api/models.py
+++ b/modules/api/models.py
@@ -14,8 +14,8 @@ API_NOT_ALLOWED = [
"outpath_samples",
"outpath_grids",
"sampler_index",
- "do_not_save_samples",
- "do_not_save_grid",
+ # "do_not_save_samples",
+ # "do_not_save_grid",
"extra_generation_params",
"overlay_images",
"do_not_reload_embeddings",
@@ -100,13 +100,31 @@ class PydanticModelGenerator:
StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator(
"StableDiffusionProcessingTxt2Img",
StableDiffusionProcessingTxt2Img,
- [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}]
+ [
+ {"key": "sampler_index", "type": str, "default": "Euler"},
+ {"key": "script_name", "type": str, "default": None},
+ {"key": "script_args", "type": list, "default": []},
+ {"key": "send_images", "type": bool, "default": True},
+ {"key": "save_images", "type": bool, "default": False},
+ {"key": "alwayson_scripts", "type": dict, "default": {}},
+ ]
).generate_model()
StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
"StableDiffusionProcessingImg2Img",
StableDiffusionProcessingImg2Img,
- [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}]
+ [
+ {"key": "sampler_index", "type": str, "default": "Euler"},
+ {"key": "init_images", "type": list, "default": None},
+ {"key": "denoising_strength", "type": float, "default": 0.75},
+ {"key": "mask", "type": str, "default": None},
+ {"key": "include_init_images", "type": bool, "default": False, "exclude" : True},
+ {"key": "script_name", "type": str, "default": None},
+ {"key": "script_args", "type": list, "default": []},
+ {"key": "send_images", "type": bool, "default": True},
+ {"key": "save_images", "type": bool, "default": False},
+ {"key": "alwayson_scripts", "type": dict, "default": {}},
+ ]
).generate_model()
class TextToImageResponse(BaseModel):
@@ -267,3 +285,7 @@ class EmbeddingsResponse(BaseModel):
class MemoryResponse(BaseModel):
ram: dict = Field(title="RAM", description="System memory stats")
cuda: dict = Field(title="CUDA", description="nVidia CUDA memory stats")
+
+class ScriptsList(BaseModel):
+ txt2img: list = Field(default=None,title="Txt2img", description="Titles of scripts (txt2img)")
+ img2img: list = Field(default=None,title="Img2img", description="Titles of scripts (img2img)") \ No newline at end of file
diff --git a/modules/cmd_args.py b/modules/cmd_args.py
new file mode 100644
index 00000000..81c0b82a
--- /dev/null
+++ b/modules/cmd_args.py
@@ -0,0 +1,103 @@
+import argparse
+import os
+from modules.paths_internal import models_path, script_path, data_path, extensions_dir, extensions_builtin_dir, sd_default_config, sd_model_file
+
+parser = argparse.ArgumentParser()
+
+parser.add_argument("-f", action='store_true', help=argparse.SUPPRESS) # allows running as root; implemented outside of webui
+parser.add_argument("--update-all-extensions", action='store_true', help="launch.py argument: download updates for all extensions when starting the program")
+parser.add_argument("--skip-python-version-check", action='store_true', help="launch.py argument: do not check python version")
+parser.add_argument("--skip-torch-cuda-test", action='store_true', help="launch.py argument: do not check if CUDA is able to work properly")
+parser.add_argument("--reinstall-xformers", action='store_true', help="launch.py argument: install the appropriate version of xformers even if you have some version already installed")
+parser.add_argument("--reinstall-torch", action='store_true', help="launch.py argument: install the appropriate version of torch even if you have some version already installed")
+parser.add_argument("--update-check", action='store_true', help="launch.py argument: chck for updates at startup")
+parser.add_argument("--tests", type=str, default=None, help="launch.py argument: run tests in the specified directory")
+parser.add_argument("--no-tests", action='store_true', help="launch.py argument: do not run tests even if --tests option is specified")
+parser.add_argument("--skip-install", action='store_true', help="launch.py argument: skip installation of packages")
+parser.add_argument("--data-dir", type=str, default=os.path.dirname(os.path.dirname(os.path.realpath(__file__))), help="base path where all user data is stored")
+parser.add_argument("--config", type=str, default=sd_default_config, help="path to config which constructs model",)
+parser.add_argument("--ckpt", type=str, default=sd_model_file, help="path to checkpoint of stable diffusion model; if specified, this checkpoint will be added to the list of checkpoints and loaded",)
+parser.add_argument("--ckpt-dir", type=str, default=None, help="Path to directory with stable diffusion checkpoints")
+parser.add_argument("--vae-dir", type=str, default=None, help="Path to directory with VAE files")
+parser.add_argument("--gfpgan-dir", type=str, help="GFPGAN directory", default=('./src/gfpgan' if os.path.exists('./src/gfpgan') else './GFPGAN'))
+parser.add_argument("--gfpgan-model", type=str, help="GFPGAN model file name", default=None)
+parser.add_argument("--no-half", action='store_true', help="do not switch the model to 16-bit floats")
+parser.add_argument("--no-half-vae", action='store_true', help="do not switch the VAE model to 16-bit floats")
+parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)")
+parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
+parser.add_argument("--embeddings-dir", type=str, default=os.path.join(data_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)")
+parser.add_argument("--textual-inversion-templates-dir", type=str, default=os.path.join(script_path, 'textual_inversion_templates'), help="directory with textual inversion templates")
+parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory")
+parser.add_argument("--localizations-dir", type=str, default=os.path.join(script_path, 'localizations'), help="localizations directory")
+parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui")
+parser.add_argument("--medvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a little speed for low VRM usage")
+parser.add_argument("--lowvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a lot of speed for very low VRM usage")
+parser.add_argument("--lowram", action='store_true', help="load stable diffusion checkpoint weights to VRAM instead of RAM")
+parser.add_argument("--always-batch-cond-uncond", action='store_true', help="disables cond/uncond batching that is enabled to save memory with --medvram or --lowvram")
+parser.add_argument("--unload-gfpgan", action='store_true', help="does not do anything.")
+parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast")
+parser.add_argument("--upcast-sampling", action='store_true', help="upcast sampling. No effect with --no-half. Usually produces similar results to --no-half with better performance while using less memory.")
+parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site")
+parser.add_argument("--ngrok", type=str, help="ngrok authtoken, alternative to gradio --share", default=None)
+parser.add_argument("--ngrok-region", type=str, help="The region in which ngrok should start.", default="us")
+parser.add_argument("--enable-insecure-extension-access", action='store_true', help="enable extensions tab regardless of other options")
+parser.add_argument("--codeformer-models-path", type=str, help="Path to directory with codeformer model file(s).", default=os.path.join(models_path, 'Codeformer'))
+parser.add_argument("--gfpgan-models-path", type=str, help="Path to directory with GFPGAN model file(s).", default=os.path.join(models_path, 'GFPGAN'))
+parser.add_argument("--esrgan-models-path", type=str, help="Path to directory with ESRGAN model file(s).", default=os.path.join(models_path, 'ESRGAN'))
+parser.add_argument("--bsrgan-models-path", type=str, help="Path to directory with BSRGAN model file(s).", default=os.path.join(models_path, 'BSRGAN'))
+parser.add_argument("--realesrgan-models-path", type=str, help="Path to directory with RealESRGAN model file(s).", default=os.path.join(models_path, 'RealESRGAN'))
+parser.add_argument("--clip-models-path", type=str, help="Path to directory with CLIP model file(s).", default=None)
+parser.add_argument("--xformers", action='store_true', help="enable xformers for cross attention layers")
+parser.add_argument("--force-enable-xformers", action='store_true', help="enable xformers for cross attention layers regardless of whether the checking code thinks you can run it; do not make bug reports if this fails to work")
+parser.add_argument("--xformers-flash-attention", action='store_true', help="enable xformers with Flash Attention to improve reproducibility (supported for SD2.x or variant only)")
+parser.add_argument("--deepdanbooru", action='store_true', help="does not do anything")
+parser.add_argument("--opt-split-attention", action='store_true', help="force-enables Doggettx's cross-attention layer optimization. By default, it's on for torch cuda.")
+parser.add_argument("--opt-sub-quad-attention", action='store_true', help="enable memory efficient sub-quadratic cross-attention layer optimization")
+parser.add_argument("--sub-quad-q-chunk-size", type=int, help="query chunk size for the sub-quadratic cross-attention layer optimization to use", default=1024)
+parser.add_argument("--sub-quad-kv-chunk-size", type=int, help="kv chunk size for the sub-quadratic cross-attention layer optimization to use", default=None)
+parser.add_argument("--sub-quad-chunk-threshold", type=int, help="the percentage of VRAM threshold for the sub-quadratic cross-attention layer optimization to use chunking", default=None)
+parser.add_argument("--opt-split-attention-invokeai", action='store_true', help="force-enables InvokeAI's cross-attention layer optimization. By default, it's on when cuda is unavailable.")
+parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find")
+parser.add_argument("--opt-sdp-attention", action='store_true', help="enable scaled dot product cross-attention layer optimization; requires PyTorch 2.*")
+parser.add_argument("--opt-sdp-no-mem-attention", action='store_true', help="enable scaled dot product cross-attention layer optimization without memory efficient attention, makes image generation deterministic; requires PyTorch 2.*")
+parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization")
+parser.add_argument("--disable-nan-check", action='store_true', help="do not check if produced images/latent spaces have nans; useful for running without a checkpoint in CI")
+parser.add_argument("--use-cpu", nargs='+', help="use CPU as torch device for specified modules", default=[], type=str.lower)
+parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests")
+parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None)
+parser.add_argument("--show-negative-prompt", action='store_true', help="does not do anything", default=False)
+parser.add_argument("--ui-config-file", type=str, help="filename to use for ui configuration", default=os.path.join(data_path, 'ui-config.json'))
+parser.add_argument("--hide-ui-dir-config", action='store_true', help="hide directory configuration from webui", default=False)
+parser.add_argument("--freeze-settings", action='store_true', help="disable editing settings", default=False)
+parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default=os.path.join(data_path, 'config.json'))
+parser.add_argument("--gradio-debug", action='store_true', help="launch gradio with --debug option")
+parser.add_argument("--gradio-auth", type=str, help='set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
+parser.add_argument("--gradio-auth-path", type=str, help='set gradio authentication file path ex. "/path/to/auth/file" same auth format as --gradio-auth', default=None)
+parser.add_argument("--gradio-img2img-tool", type=str, help='does not do anything')
+parser.add_argument("--gradio-inpaint-tool", type=str, help="does not do anything")
+parser.add_argument("--opt-channelslast", action='store_true', help="change memory type for stable diffusion to channels last")
+parser.add_argument("--styles-file", type=str, help="filename to use for styles", default=os.path.join(data_path, 'styles.csv'))
+parser.add_argument("--autolaunch", action='store_true', help="open the webui URL in the system's default browser upon launch", default=False)
+parser.add_argument("--theme", type=str, help="launches the UI with light or dark theme", default=None)
+parser.add_argument("--use-textbox-seed", action='store_true', help="use textbox for seeds in UI (no up/down, but possible to input long seeds)", default=False)
+parser.add_argument("--disable-console-progressbars", action='store_true', help="do not output progressbars to console", default=False)
+parser.add_argument("--enable-console-prompts", action='store_true', help="print prompts to console when generating with txt2img and img2img", default=False)
+parser.add_argument('--vae-path', type=str, help='Checkpoint to use as VAE; setting this argument disables all settings related to VAE', default=None)
+parser.add_argument("--disable-safe-unpickle", action='store_true', help="disable checking pytorch models for malicious code", default=False)
+parser.add_argument("--api", action='store_true', help="use api=True to launch the API together with the webui (use --nowebui instead for only the API)")
+parser.add_argument("--api-auth", type=str, help='Set authentication for API like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
+parser.add_argument("--api-log", action='store_true', help="use api-log=True to enable logging of all API requests")
+parser.add_argument("--nowebui", action='store_true', help="use api=True to launch the API instead of the webui")
+parser.add_argument("--ui-debug-mode", action='store_true', help="Don't load model to quickly launch UI")
+parser.add_argument("--device-id", type=str, help="Select the default CUDA device to use (export CUDA_VISIBLE_DEVICES=0,1,etc might be needed before)", default=None)
+parser.add_argument("--administrator", action='store_true', help="Administrator rights", default=False)
+parser.add_argument("--cors-allow-origins", type=str, help="Allowed CORS origin(s) in the form of a comma-separated list (no spaces)", default=None)
+parser.add_argument("--cors-allow-origins-regex", type=str, help="Allowed CORS origin(s) in the form of a single regular expression", default=None)
+parser.add_argument("--tls-keyfile", type=str, help="Partially enables TLS, requires --tls-certfile to fully function", default=None)
+parser.add_argument("--tls-certfile", type=str, help="Partially enables TLS, requires --tls-keyfile to fully function", default=None)
+parser.add_argument("--server-name", type=str, help="Sets hostname of server", default=None)
+parser.add_argument("--gradio-queue", action='store_true', help="does not do anything", default=True)
+parser.add_argument("--no-gradio-queue", action='store_true', help="Disables gradio queue; causes the webpage to use http requests instead of websockets; was the defaul in earlier versions")
+parser.add_argument("--skip-version-check", action='store_true', help="Do not check versions of torch and xformers")
+parser.add_argument("--no-hashing", action='store_true', help="disable sha256 hashing of checkpoints to help loading performance", default=False)
+parser.add_argument("--no-download-sd-model", action='store_true', help="don't download SD1.5 model even if no model is found in --ckpt-dir", default=False)
diff --git a/modules/codeformer_model.py b/modules/codeformer_model.py
index 01fb7bd8..8d84bbc9 100644
--- a/modules/codeformer_model.py
+++ b/modules/codeformer_model.py
@@ -55,7 +55,7 @@ def setup_model(dirname):
if self.net is not None and self.face_helper is not None:
self.net.to(devices.device_codeformer)
return self.net, self.face_helper
- model_paths = modelloader.load_models(model_path, model_url, self.cmd_dir, download_name='codeformer-v0.1.0.pth')
+ model_paths = modelloader.load_models(model_path, model_url, self.cmd_dir, download_name='codeformer-v0.1.0.pth', ext_filter=['.pth'])
if len(model_paths) != 0:
ckpt_path = model_paths[0]
else:
diff --git a/modules/config_states.py b/modules/config_states.py
new file mode 100644
index 00000000..2ea00929
--- /dev/null
+++ b/modules/config_states.py
@@ -0,0 +1,200 @@
+"""
+Supports saving and restoring webui and extensions from a known working set of commits
+"""
+
+import os
+import sys
+import traceback
+import json
+import time
+import tqdm
+
+from datetime import datetime
+from collections import OrderedDict
+import git
+
+from modules import shared, extensions
+from modules.paths_internal import extensions_dir, extensions_builtin_dir, script_path, config_states_dir
+
+
+all_config_states = OrderedDict()
+
+
+def list_config_states():
+ global all_config_states
+
+ all_config_states.clear()
+ os.makedirs(config_states_dir, exist_ok=True)
+
+ config_states = []
+ for filename in os.listdir(config_states_dir):
+ if filename.endswith(".json"):
+ path = os.path.join(config_states_dir, filename)
+ with open(path, "r", encoding="utf-8") as f:
+ j = json.load(f)
+ j["filepath"] = path
+ config_states.append(j)
+
+ config_states = list(sorted(config_states, key=lambda cs: cs["created_at"], reverse=True))
+
+ for cs in config_states:
+ timestamp = time.asctime(time.gmtime(cs["created_at"]))
+ name = cs.get("name", "Config")
+ full_name = f"{name}: {timestamp}"
+ all_config_states[full_name] = cs
+
+ return all_config_states
+
+
+def get_webui_config():
+ webui_repo = None
+
+ try:
+ if os.path.exists(os.path.join(script_path, ".git")):
+ webui_repo = git.Repo(script_path)
+ except Exception:
+ print(f"Error reading webui git info from {script_path}:", file=sys.stderr)
+ print(traceback.format_exc(), file=sys.stderr)
+
+ webui_remote = None
+ webui_commit_hash = None
+ webui_commit_date = None
+ webui_branch = None
+ if webui_repo and not webui_repo.bare:
+ try:
+ webui_remote = next(webui_repo.remote().urls, None)
+ head = webui_repo.head.commit
+ webui_commit_date = webui_repo.head.commit.committed_date
+ webui_commit_hash = head.hexsha
+ webui_branch = webui_repo.active_branch.name
+
+ except Exception:
+ webui_remote = None
+
+ return {
+ "remote": webui_remote,
+ "commit_hash": webui_commit_hash,
+ "commit_date": webui_commit_date,
+ "branch": webui_branch,
+ }
+
+
+def get_extension_config():
+ ext_config = {}
+
+ for ext in extensions.extensions:
+ entry = {
+ "name": ext.name,
+ "path": ext.path,
+ "enabled": ext.enabled,
+ "is_builtin": ext.is_builtin,
+ "remote": ext.remote,
+ "commit_hash": ext.commit_hash,
+ "commit_date": ext.commit_date,
+ "branch": ext.branch,
+ "have_info_from_repo": ext.have_info_from_repo
+ }
+
+ ext_config[ext.name] = entry
+
+ return ext_config
+
+
+def get_config():
+ creation_time = datetime.now().timestamp()
+ webui_config = get_webui_config()
+ ext_config = get_extension_config()
+
+ return {
+ "created_at": creation_time,
+ "webui": webui_config,
+ "extensions": ext_config
+ }
+
+
+def restore_webui_config(config):
+ print("* Restoring webui state...")
+
+ if "webui" not in config:
+ print("Error: No webui data saved to config")
+ return
+
+ webui_config = config["webui"]
+
+ if "commit_hash" not in webui_config:
+ print("Error: No commit saved to webui config")
+ return
+
+ webui_commit_hash = webui_config.get("commit_hash", None)
+ webui_repo = None
+
+ try:
+ if os.path.exists(os.path.join(script_path, ".git")):
+ webui_repo = git.Repo(script_path)
+ except Exception:
+ print(f"Error reading webui git info from {script_path}:", file=sys.stderr)
+ print(traceback.format_exc(), file=sys.stderr)
+ return
+
+ try:
+ webui_repo.git.fetch(all=True)
+ webui_repo.git.reset(webui_commit_hash, hard=True)
+ print(f"* Restored webui to commit {webui_commit_hash}.")
+ except Exception:
+ print(f"Error restoring webui to commit {webui_commit_hash}:", file=sys.stderr)
+ print(traceback.format_exc(), file=sys.stderr)
+
+
+def restore_extension_config(config):
+ print("* Restoring extension state...")
+
+ if "extensions" not in config:
+ print("Error: No extension data saved to config")
+ return
+
+ ext_config = config["extensions"]
+
+ results = []
+ disabled = []
+
+ for ext in tqdm.tqdm(extensions.extensions):
+ if ext.is_builtin:
+ continue
+
+ ext.read_info_from_repo()
+ current_commit = ext.commit_hash
+
+ if ext.name not in ext_config:
+ ext.disabled = True
+ disabled.append(ext.name)
+ results.append((ext, current_commit[:8], False, "Saved extension state not found in config, marking as disabled"))
+ continue
+
+ entry = ext_config[ext.name]
+
+ if "commit_hash" in entry and entry["commit_hash"]:
+ try:
+ ext.fetch_and_reset_hard(entry["commit_hash"])
+ ext.read_info_from_repo()
+ if current_commit != entry["commit_hash"]:
+ results.append((ext, current_commit[:8], True, entry["commit_hash"][:8]))
+ except Exception as ex:
+ results.append((ext, current_commit[:8], False, ex))
+ else:
+ results.append((ext, current_commit[:8], False, "No commit hash found in config"))
+
+ if not entry.get("enabled", False):
+ ext.disabled = True
+ disabled.append(ext.name)
+ else:
+ ext.disabled = False
+
+ shared.opts.disabled_extensions = disabled
+ shared.opts.save(shared.config_filename)
+
+ print("* Finished restoring extensions. Results:")
+ for ext, prev_commit, success, result in results:
+ if success:
+ print(f" + {ext.name}: {prev_commit} -> {result}")
+ else:
+ print(f" ! {ext.name}: FAILURE ({result})")
diff --git a/modules/devices.py b/modules/devices.py
index 919048d0..c705a3cb 100644
--- a/modules/devices.py
+++ b/modules/devices.py
@@ -1,22 +1,17 @@
-import sys, os, shlex
+import sys
import contextlib
import torch
from modules import errors
-from modules.sd_hijack_utils import CondFunc
-from packaging import version
+
+if sys.platform == "darwin":
+ from modules import mac_specific
-# has_mps is only available in nightly pytorch (for now) and macOS 12.3+.
-# check `getattr` and try it for compatibility
def has_mps() -> bool:
- if not getattr(torch, 'has_mps', False):
- return False
- try:
- torch.zeros(1).to(torch.device("mps"))
- return True
- except Exception:
+ if sys.platform != "darwin":
return False
-
+ else:
+ return mac_specific.has_mps
def extract_device_id(args, name):
for x in range(len(args)):
@@ -97,14 +92,18 @@ def cond_cast_float(input):
def randn(seed, shape):
+ from modules.shared import opts
+
torch.manual_seed(seed)
- if device.type == 'mps':
+ if opts.randn_source == "CPU" or device.type == 'mps':
return torch.randn(shape, device=cpu).to(device)
return torch.randn(shape, device=device)
def randn_without_seed(shape):
- if device.type == 'mps':
+ from modules.shared import opts
+
+ if opts.randn_source == "CPU" or device.type == 'mps':
return torch.randn(shape, device=cpu).to(device)
return torch.randn(shape, device=device)
@@ -155,36 +154,3 @@ def test_for_nans(x, where):
message += " Use --disable-nan-check commandline argument to disable this check."
raise NansException(message)
-
-
-# MPS workaround for https://github.com/pytorch/pytorch/issues/89784
-def cumsum_fix(input, cumsum_func, *args, **kwargs):
- if input.device.type == 'mps':
- output_dtype = kwargs.get('dtype', input.dtype)
- if output_dtype == torch.int64:
- return cumsum_func(input.cpu(), *args, **kwargs).to(input.device)
- elif cumsum_needs_bool_fix and output_dtype == torch.bool or cumsum_needs_int_fix and (output_dtype == torch.int8 or output_dtype == torch.int16):
- return cumsum_func(input.to(torch.int32), *args, **kwargs).to(torch.int64)
- return cumsum_func(input, *args, **kwargs)
-
-
-if has_mps():
- if version.parse(torch.__version__) < version.parse("1.13"):
- # PyTorch 1.13 doesn't need these fixes but unfortunately is slower and has regressions that prevent training from working
-
- # MPS workaround for https://github.com/pytorch/pytorch/issues/79383
- CondFunc('torch.Tensor.to', lambda orig_func, self, *args, **kwargs: orig_func(self.contiguous(), *args, **kwargs),
- lambda _, self, *args, **kwargs: self.device.type != 'mps' and (args and isinstance(args[0], torch.device) and args[0].type == 'mps' or isinstance(kwargs.get('device'), torch.device) and kwargs['device'].type == 'mps'))
- # MPS workaround for https://github.com/pytorch/pytorch/issues/80800
- CondFunc('torch.nn.functional.layer_norm', lambda orig_func, *args, **kwargs: orig_func(*([args[0].contiguous()] + list(args[1:])), **kwargs),
- lambda _, *args, **kwargs: args and isinstance(args[0], torch.Tensor) and args[0].device.type == 'mps')
- # MPS workaround for https://github.com/pytorch/pytorch/issues/90532
- CondFunc('torch.Tensor.numpy', lambda orig_func, self, *args, **kwargs: orig_func(self.detach(), *args, **kwargs), lambda _, self, *args, **kwargs: self.requires_grad)
- elif version.parse(torch.__version__) > version.parse("1.13.1"):
- cumsum_needs_int_fix = not torch.Tensor([1,2]).to(torch.device("mps")).equal(torch.ShortTensor([1,1]).to(torch.device("mps")).cumsum(0))
- cumsum_needs_bool_fix = not torch.BoolTensor([True,True]).to(device=torch.device("mps"), dtype=torch.int64).equal(torch.BoolTensor([True,False]).to(torch.device("mps")).cumsum(0))
- cumsum_fix_func = lambda orig_func, input, *args, **kwargs: cumsum_fix(input, orig_func, *args, **kwargs)
- CondFunc('torch.cumsum', cumsum_fix_func, None)
- CondFunc('torch.Tensor.cumsum', cumsum_fix_func, None)
- CondFunc('torch.narrow', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).clone(), None)
-
diff --git a/modules/esrgan_model_arch.py b/modules/esrgan_model_arch.py
index bc9ceb2a..1b52b0f5 100644
--- a/modules/esrgan_model_arch.py
+++ b/modules/esrgan_model_arch.py
@@ -1,5 +1,6 @@
# this file is adapted from https://github.com/victorca25/iNNfer
+from collections import OrderedDict
import math
import functools
import torch
diff --git a/modules/extensions.py b/modules/extensions.py
index 5e12b1aa..34d9d654 100644
--- a/modules/extensions.py
+++ b/modules/extensions.py
@@ -2,19 +2,26 @@ import os
import sys
import traceback
+import time
+from datetime import datetime
import git
-from modules import paths, shared
+from modules import shared
+from modules.paths_internal import extensions_dir, extensions_builtin_dir, script_path
extensions = []
-extensions_dir = os.path.join(paths.data_path, "extensions")
-extensions_builtin_dir = os.path.join(paths.script_path, "extensions-builtin")
if not os.path.exists(extensions_dir):
os.makedirs(extensions_dir)
+
def active():
- return [x for x in extensions if x.enabled]
+ if shared.opts.disable_all_extensions == "all":
+ return []
+ elif shared.opts.disable_all_extensions == "extra":
+ return [x for x in extensions if x.enabled and x.is_builtin]
+ else:
+ return [x for x in extensions if x.enabled]
class Extension:
@@ -25,22 +32,43 @@ class Extension:
self.status = ''
self.can_update = False
self.is_builtin = is_builtin
+ self.commit_hash = ''
+ self.commit_date = None
+ self.version = ''
+ self.branch = None
+ self.remote = None
+ self.have_info_from_repo = False
+
+ def read_info_from_repo(self):
+ if self.is_builtin or self.have_info_from_repo:
+ return
+
+ self.have_info_from_repo = True
repo = None
try:
- if os.path.exists(os.path.join(path, ".git")):
- repo = git.Repo(path)
+ if os.path.exists(os.path.join(self.path, ".git")):
+ repo = git.Repo(self.path)
except Exception:
- print(f"Error reading github repository info from {path}:", file=sys.stderr)
+ print(f"Error reading github repository info from {self.path}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
if repo is None or repo.bare:
self.remote = None
else:
try:
- self.remote = next(repo.remote().urls, None)
self.status = 'unknown'
- except Exception:
+ self.remote = next(repo.remote().urls, None)
+ head = repo.head.commit
+ self.commit_date = repo.head.commit.committed_date
+ ts = time.asctime(time.gmtime(self.commit_date))
+ if repo.active_branch:
+ self.branch = repo.active_branch.name
+ self.commit_hash = head.hexsha
+ self.version = f'{self.commit_hash[:8]} ({ts})'
+
+ except Exception as ex:
+ print(f"Failed reading extension data from Git repository ({self.name}): {ex}", file=sys.stderr)
self.remote = None
def list_files(self, subdir, extension):
@@ -60,21 +88,33 @@ class Extension:
def check_updates(self):
repo = git.Repo(self.path)
- for fetch in repo.remote().fetch("--dry-run"):
+ for fetch in repo.remote().fetch(dry_run=True):
if fetch.flags != fetch.HEAD_UPTODATE:
self.can_update = True
- self.status = "behind"
+ self.status = "new commits"
return
+ try:
+ origin = repo.rev_parse('origin')
+ if repo.head.commit != origin:
+ self.can_update = True
+ self.status = "behind HEAD"
+ return
+ except Exception:
+ self.can_update = False
+ self.status = "unknown (remote error)"
+ return
+
self.can_update = False
self.status = "latest"
- def fetch_and_reset_hard(self):
+ def fetch_and_reset_hard(self, commit='origin'):
repo = git.Repo(self.path)
# Fix: `error: Your local changes to the following files would be overwritten by merge`,
# because WSL2 Docker set 755 file permissions instead of 644, this results to the error.
- repo.git.fetch('--all')
- repo.git.reset('--hard', 'origin')
+ repo.git.fetch(all=True)
+ repo.git.reset(commit, hard=True)
+ self.have_info_from_repo = False
def list_extensions():
@@ -83,7 +123,12 @@ def list_extensions():
if not os.path.isdir(extensions_dir):
return
- paths = []
+ if shared.opts.disable_all_extensions == "all":
+ print("*** \"Disable all extensions\" option was set, will not load any extensions ***")
+ elif shared.opts.disable_all_extensions == "extra":
+ print("*** \"Disable all extensions\" option was set, will only load built-in extensions ***")
+
+ extension_paths = []
for dirname in [extensions_dir, extensions_builtin_dir]:
if not os.path.isdir(dirname):
return
@@ -93,9 +138,8 @@ def list_extensions():
if not os.path.isdir(path):
continue
- paths.append((extension_dirname, path, dirname == extensions_builtin_dir))
+ extension_paths.append((extension_dirname, path, dirname == extensions_builtin_dir))
- for dirname, path, is_builtin in paths:
+ for dirname, path, is_builtin in extension_paths:
extension = Extension(name=dirname, path=path, enabled=dirname not in shared.opts.disabled_extensions, is_builtin=is_builtin)
extensions.append(extension)
-
diff --git a/modules/extra_networks_hypernet.py b/modules/extra_networks_hypernet.py
index d3a4d7ad..33d100dd 100644
--- a/modules/extra_networks_hypernet.py
+++ b/modules/extra_networks_hypernet.py
@@ -9,7 +9,7 @@ class ExtraNetworkHypernet(extra_networks.ExtraNetwork):
def activate(self, p, params_list):
additional = shared.opts.sd_hypernetwork
- if additional != "" and additional in shared.hypernetworks and len([x for x in params_list if x.items[0] == additional]) == 0:
+ if additional != "None" and additional in shared.hypernetworks and len([x for x in params_list if x.items[0] == additional]) == 0:
p.all_prompts = [x + f"<hypernet:{additional}:{shared.opts.extra_networks_default_multiplier}>" for x in p.all_prompts]
params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier]))
diff --git a/modules/extras.py b/modules/extras.py
index d8ece955..ff4e9c4e 100644
--- a/modules/extras.py
+++ b/modules/extras.py
@@ -1,6 +1,7 @@
import os
import re
import shutil
+import json
import torch
@@ -71,7 +72,7 @@ def to_half(tensor, enable):
return tensor
-def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format, config_source, bake_in_vae, discard_weights):
+def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format, config_source, bake_in_vae, discard_weights, save_metadata):
shared.state.begin()
shared.state.job = 'model-merge'
@@ -241,13 +242,54 @@ def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_
shared.state.textinfo = "Saving"
print(f"Saving to {output_modelname}...")
+ metadata = {"format": "pt", "sd_merge_models": {}, "sd_merge_recipe": None}
+
+ if save_metadata:
+ merge_recipe = {
+ "type": "webui", # indicate this model was merged with webui's built-in merger
+ "primary_model_hash": primary_model_info.sha256,
+ "secondary_model_hash": secondary_model_info.sha256 if secondary_model_info else None,
+ "tertiary_model_hash": tertiary_model_info.sha256 if tertiary_model_info else None,
+ "interp_method": interp_method,
+ "multiplier": multiplier,
+ "save_as_half": save_as_half,
+ "custom_name": custom_name,
+ "config_source": config_source,
+ "bake_in_vae": bake_in_vae,
+ "discard_weights": discard_weights,
+ "is_inpainting": result_is_inpainting_model,
+ "is_instruct_pix2pix": result_is_instruct_pix2pix_model
+ }
+ metadata["sd_merge_recipe"] = json.dumps(merge_recipe)
+
+ def add_model_metadata(checkpoint_info):
+ checkpoint_info.calculate_shorthash()
+ metadata["sd_merge_models"][checkpoint_info.sha256] = {
+ "name": checkpoint_info.name,
+ "legacy_hash": checkpoint_info.hash,
+ "sd_merge_recipe": checkpoint_info.metadata.get("sd_merge_recipe", None)
+ }
+
+ metadata["sd_merge_models"].update(checkpoint_info.metadata.get("sd_merge_models", {}))
+
+ add_model_metadata(primary_model_info)
+ if secondary_model_info:
+ add_model_metadata(secondary_model_info)
+ if tertiary_model_info:
+ add_model_metadata(tertiary_model_info)
+
+ metadata["sd_merge_models"] = json.dumps(metadata["sd_merge_models"])
+
_, extension = os.path.splitext(output_modelname)
if extension.lower() == ".safetensors":
- safetensors.torch.save_file(theta_0, output_modelname, metadata={"format": "pt"})
+ safetensors.torch.save_file(theta_0, output_modelname, metadata=metadata)
else:
torch.save(theta_0, output_modelname)
sd_models.list_models()
+ created_model = next((ckpt for ckpt in sd_models.checkpoints_list.values() if ckpt.name == filename), None)
+ if created_model:
+ created_model.calculate_shorthash()
create_config(output_modelname, config_source, primary_model_info, secondary_model_info, tertiary_model_info)
diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py
index fc9e17aa..99f1a0d3 100644
--- a/modules/generation_parameters_copypaste.py
+++ b/modules/generation_parameters_copypaste.py
@@ -23,13 +23,14 @@ registered_param_bindings = []
class ParamBinding:
- def __init__(self, paste_button, tabname, source_text_component=None, source_image_component=None, source_tabname=None, override_settings_component=None):
+ def __init__(self, paste_button, tabname, source_text_component=None, source_image_component=None, source_tabname=None, override_settings_component=None, paste_field_names=[]):
self.paste_button = paste_button
self.tabname = tabname
self.source_text_component = source_text_component
self.source_image_component = source_image_component
self.source_tabname = source_tabname
self.override_settings_component = override_settings_component
+ self.paste_field_names = paste_field_names
def reset():
@@ -74,8 +75,8 @@ def image_from_url_text(filedata):
return image
-def add_paste_fields(tabname, init_img, fields):
- paste_fields[tabname] = {"init_img": init_img, "fields": fields}
+def add_paste_fields(tabname, init_img, fields, override_settings_component=None):
+ paste_fields[tabname] = {"init_img": init_img, "fields": fields, "override_settings_component": override_settings_component}
# backwards compatibility for existing extensions
import modules.ui
@@ -110,6 +111,7 @@ def connect_paste_params_buttons():
for binding in registered_param_bindings:
destination_image_component = paste_fields[binding.tabname]["init_img"]
fields = paste_fields[binding.tabname]["fields"]
+ override_settings_component = binding.override_settings_component or paste_fields[binding.tabname]["override_settings_component"]
destination_width_component = next(iter([field for field, name in fields if name == "Size-1"] if fields else []), None)
destination_height_component = next(iter([field for field, name in fields if name == "Size-2"] if fields else []), None)
@@ -130,10 +132,10 @@ def connect_paste_params_buttons():
)
if binding.source_text_component is not None and fields is not None:
- connect_paste(binding.paste_button, fields, binding.source_text_component, binding.override_settings_component, binding.tabname)
+ connect_paste(binding.paste_button, fields, binding.source_text_component, override_settings_component, binding.tabname)
if binding.source_tabname is not None and fields is not None:
- paste_field_names = ['Prompt', 'Negative prompt', 'Steps', 'Face restoration'] + (["Seed"] if shared.opts.send_seed else [])
+ paste_field_names = ['Prompt', 'Negative prompt', 'Steps', 'Face restoration'] + (["Seed"] if shared.opts.send_seed else []) + binding.paste_field_names
binding.paste_button.click(
fn=lambda *x: x,
inputs=[field for field, name in paste_fields[binding.source_tabname]["fields"] if name in paste_field_names],
@@ -282,11 +284,17 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
restore_old_hires_fix_params(res)
+ # Missing RNG means the default was set, which is GPU RNG
+ if "RNG" not in res:
+ res["RNG"] = "GPU"
+
return res
settings_map = {}
+
+
infotext_to_setting_name_mapping = [
('Clip skip', 'CLIP_stop_at_last_layers', ),
('Conditional mask weight', 'inpainting_mask_weight'),
@@ -295,7 +303,13 @@ infotext_to_setting_name_mapping = [
('Noise multiplier', 'initial_noise_multiplier'),
('Eta', 'eta_ancestral'),
('Eta DDIM', 'eta_ddim'),
- ('Discard penultimate sigma', 'always_discard_next_to_last_sigma')
+ ('Discard penultimate sigma', 'always_discard_next_to_last_sigma'),
+ ('UniPC variant', 'uni_pc_variant'),
+ ('UniPC skip type', 'uni_pc_skip_type'),
+ ('UniPC order', 'uni_pc_order'),
+ ('UniPC lower order final', 'uni_pc_lower_order_final'),
+ ('RNG', 'randn_source'),
+ ('NGMS', 's_min_uncond'),
]
@@ -393,9 +407,14 @@ def connect_paste(button, paste_fields, input_comp, override_settings_component,
button.click(
fn=paste_func,
- _js=f"recalculate_prompts_{tabname}",
inputs=[input_comp],
outputs=[x[0] for x in paste_fields],
)
+ button.click(
+ fn=None,
+ _js=f"recalculate_prompts_{tabname}",
+ inputs=[],
+ outputs=[],
+ )
diff --git a/modules/hashes.py b/modules/hashes.py
index 819362a3..83272a07 100644
--- a/modules/hashes.py
+++ b/modules/hashes.py
@@ -4,6 +4,7 @@ import os.path
import filelock
+from modules import shared
from modules.paths import data_path
@@ -68,6 +69,9 @@ def sha256(filename, title):
if sha256_value is not None:
return sha256_value
+ if shared.cmd_opts.no_hashing:
+ return None
+
print(f"Calculating sha256 for {filename}: ", end='')
sha256_value = calculate_sha256(filename)
print(f"{sha256_value}")
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 503534e2..1fc49537 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -307,12 +307,12 @@ class Hypernetwork:
def shorthash(self):
sha256 = hashes.sha256(self.filename, f'hypernet/{self.name}')
- return sha256[0:10]
+ return sha256[0:10] if sha256 else None
def list_hypernetworks(path):
res = {}
- for filename in sorted(glob.iglob(os.path.join(path, '**/*.pt'), recursive=True)):
+ for filename in sorted(glob.iglob(os.path.join(path, '**/*.pt'), recursive=True), key=str.lower):
name = os.path.splitext(os.path.basename(filename))[0]
# Prevent a hypothetical "None.pt" from being listed.
if name != "None":
@@ -380,8 +380,8 @@ def apply_single_hypernetwork(hypernetwork, context_k, context_v, layer=None):
layer.hyper_k = hypernetwork_layers[0]
layer.hyper_v = hypernetwork_layers[1]
- context_k = hypernetwork_layers[0](context_k)
- context_v = hypernetwork_layers[1](context_v)
+ context_k = devices.cond_cast_unet(hypernetwork_layers[0](devices.cond_cast_float(context_k)))
+ context_v = devices.cond_cast_unet(hypernetwork_layers[1](devices.cond_cast_float(context_v)))
return context_k, context_v
@@ -496,7 +496,7 @@ def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None,
shared.reload_hypernetworks()
-def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_hypernetwork_every, template_filename, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
+def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, use_weight, create_image_every, save_hypernetwork_every, template_filename, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
# images allows training previews to have infotext. Importing it at the top causes a circular import problem.
from modules import images
@@ -554,7 +554,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
pin_memory = shared.opts.pin_memory
- ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize)
+ ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize, use_weight=use_weight)
if shared.opts.save_training_settings_to_txt:
saved_params = dict(
@@ -640,13 +640,19 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
with devices.autocast():
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
+ if use_weight:
+ w = batch.weight.to(devices.device, non_blocking=pin_memory)
if tag_drop_out != 0 or shuffle_tags:
shared.sd_model.cond_stage_model.to(devices.device)
c = shared.sd_model.cond_stage_model(batch.cond_text).to(devices.device, non_blocking=pin_memory)
shared.sd_model.cond_stage_model.to(devices.cpu)
else:
c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory)
- loss = shared.sd_model(x, c)[0] / gradient_step
+ if use_weight:
+ loss = shared.sd_model.weighted_forward(x, c, w)[0] / gradient_step
+ del w
+ else:
+ loss = shared.sd_model.forward(x, c)[0] / gradient_step
del x
del c
diff --git a/modules/images.py b/modules/images.py
index ae3cdaf4..fd173829 100644
--- a/modules/images.py
+++ b/modules/images.py
@@ -16,8 +16,9 @@ from PIL import Image, ImageFont, ImageDraw, PngImagePlugin
from fonts.ttf import Roboto
import string
import json
+import hashlib
-from modules import sd_samplers, shared, script_callbacks
+from modules import sd_samplers, shared, script_callbacks, errors
from modules.shared import opts, cmd_opts
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
@@ -130,7 +131,7 @@ class GridAnnotation:
self.size = None
-def draw_grid_annotations(im, width, height, hor_texts, ver_texts):
+def draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin=0):
def wrap(drawing, text, font, line_length):
lines = ['']
for word in text.split():
@@ -194,32 +195,35 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts):
line.allowed_width = allowed_width
hor_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing for lines in hor_texts]
- ver_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing * len(lines) for lines in
- ver_texts]
+ ver_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing * len(lines) for lines in ver_texts]
pad_top = 0 if sum(hor_text_heights) == 0 else max(hor_text_heights) + line_spacing * 2
- result = Image.new("RGB", (im.width + pad_left, im.height + pad_top), "white")
- result.paste(im, (pad_left, pad_top))
+ result = Image.new("RGB", (im.width + pad_left + margin * (cols-1), im.height + pad_top + margin * (rows-1)), "white")
+
+ for row in range(rows):
+ for col in range(cols):
+ cell = im.crop((width * col, height * row, width * (col+1), height * (row+1)))
+ result.paste(cell, (pad_left + (width + margin) * col, pad_top + (height + margin) * row))
d = ImageDraw.Draw(result)
for col in range(cols):
- x = pad_left + width * col + width / 2
+ x = pad_left + (width + margin) * col + width / 2
y = pad_top / 2 - hor_text_heights[col] / 2
draw_texts(d, x, y, hor_texts[col], fnt, fontsize)
for row in range(rows):
x = pad_left / 2
- y = pad_top + height * row + height / 2 - ver_text_heights[row] / 2
+ y = pad_top + (height + margin) * row + height / 2 - ver_text_heights[row] / 2
draw_texts(d, x, y, ver_texts[row], fnt, fontsize)
return result
-def draw_prompt_matrix(im, width, height, all_prompts):
+def draw_prompt_matrix(im, width, height, all_prompts, margin=0):
prompts = all_prompts[1:]
boundary = math.ceil(len(prompts) / 2)
@@ -229,7 +233,7 @@ def draw_prompt_matrix(im, width, height, all_prompts):
hor_texts = [[GridAnnotation(x, is_active=pos & (1 << i) != 0) for i, x in enumerate(prompts_horiz)] for pos in range(1 << len(prompts_horiz))]
ver_texts = [[GridAnnotation(x, is_active=pos & (1 << i) != 0) for i, x in enumerate(prompts_vert)] for pos in range(1 << len(prompts_vert))]
- return draw_grid_annotations(im, width, height, hor_texts, ver_texts)
+ return draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin)
def resize_image(resize_mode, im, width, height, upscaler_name=None):
@@ -257,9 +261,12 @@ def resize_image(resize_mode, im, width, height, upscaler_name=None):
if scale > 1.0:
upscalers = [x for x in shared.sd_upscalers if x.name == upscaler_name]
- assert len(upscalers) > 0, f"could not find upscaler named {upscaler_name}"
+ if len(upscalers) == 0:
+ upscaler = shared.sd_upscalers[0]
+ print(f"could not find upscaler named {upscaler_name or '<empty string>'}, using {upscaler.name} as a fallback")
+ else:
+ upscaler = upscalers[0]
- upscaler = upscalers[0]
im = upscaler.scaler.upscale(im, scale, upscaler.data_path)
if im.width != w or im.height != h:
@@ -311,6 +318,7 @@ re_nonletters = re.compile(r'[\s' + string.punctuation + ']+')
re_pattern = re.compile(r"(.*?)(?:\[([^\[\]]+)\]|$)")
re_pattern_arg = re.compile(r"(.*)<([^>]*)>$")
max_filename_part_length = 128
+NOTHING_AND_SKIP_PREVIOUS_TEXT = object()
def sanitize_filename_part(text, replace_spaces=True):
@@ -340,10 +348,15 @@ class FilenameGenerator:
'date': lambda self: datetime.datetime.now().strftime('%Y-%m-%d'),
'datetime': lambda self, *args: self.datetime(*args), # accepts formats: [datetime], [datetime<Format>], [datetime<Format><Time Zone>]
'job_timestamp': lambda self: getattr(self.p, "job_timestamp", shared.state.job_timestamp),
+ 'prompt_hash': lambda self: hashlib.sha256(self.prompt.encode()).hexdigest()[0:8],
'prompt': lambda self: sanitize_filename_part(self.prompt),
'prompt_no_styles': lambda self: self.prompt_no_style(),
'prompt_spaces': lambda self: sanitize_filename_part(self.prompt, replace_spaces=False),
'prompt_words': lambda self: self.prompt_words(),
+ 'batch_number': lambda self: NOTHING_AND_SKIP_PREVIOUS_TEXT if self.p.batch_size == 1 else self.p.batch_index + 1,
+ 'generation_number': lambda self: NOTHING_AND_SKIP_PREVIOUS_TEXT if self.p.n_iter == 1 and self.p.batch_size == 1 else self.p.iteration * self.p.batch_size + self.p.batch_index + 1,
+ 'hasprompt': lambda self, *args: self.hasprompt(*args), # accepts formats:[hasprompt<prompt1|default><prompt2>..]
+ 'clip_skip': lambda self: opts.data["CLIP_stop_at_last_layers"],
}
default_time_format = '%Y%m%d%H%M%S'
@@ -352,6 +365,22 @@ class FilenameGenerator:
self.seed = seed
self.prompt = prompt
self.image = image
+
+ def hasprompt(self, *args):
+ lower = self.prompt.lower()
+ if self.p is None or self.prompt is None:
+ return None
+ outres = ""
+ for arg in args:
+ if arg != "":
+ division = arg.split("|")
+ expected = division[0].lower()
+ default = division[1] if len(division) > 1 else ""
+ if lower.find(expected) >= 0:
+ outres = f'{outres}{expected}'
+ else:
+ outres = outres if default == "" else f'{outres}{default}'
+ return sanitize_filename_part(outres)
def prompt_no_style(self):
if self.p is None or self.prompt is None:
@@ -395,9 +424,9 @@ class FilenameGenerator:
for m in re_pattern.finditer(x):
text, pattern = m.groups()
- res += text
if pattern is None:
+ res += text
continue
pattern_args = []
@@ -418,11 +447,13 @@ class FilenameGenerator:
print(f"Error adding [{pattern}] to filename", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
- if replacement is not None:
- res += str(replacement)
+ if replacement == NOTHING_AND_SKIP_PREVIOUS_TEXT:
+ continue
+ elif replacement is not None:
+ res += text + str(replacement)
continue
- res += f'[{pattern}]'
+ res += f'{text}[{pattern}]'
return res
@@ -548,8 +579,10 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
elif extension.lower() in (".jpg", ".jpeg", ".webp"):
if image_to_save.mode == 'RGBA':
image_to_save = image_to_save.convert("RGB")
+ elif image_to_save.mode == 'I;16':
+ image_to_save = image_to_save.point(lambda p: p * 0.0038910505836576).convert("RGB" if extension.lower() == ".webp" else "L")
- image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality)
+ image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality, lossless=opts.webp_lossless)
if opts.enable_pnginfo and info is not None:
exif_bytes = piexif.dump({
@@ -566,21 +599,28 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
os.replace(temp_file_path, filename_without_extension + extension)
fullfn_without_extension, extension = os.path.splitext(params.filename)
+ if hasattr(os, 'statvfs'):
+ max_name_len = os.statvfs(path).f_namemax
+ fullfn_without_extension = fullfn_without_extension[:max_name_len - max(4, len(extension))]
+ params.filename = fullfn_without_extension + extension
+ fullfn = params.filename
_atomically_save_image(image, fullfn_without_extension, extension)
image.already_saved_as = fullfn
- target_side_length = 4000
- oversize = image.width > target_side_length or image.height > target_side_length
- if opts.export_for_4chan and (oversize or os.stat(fullfn).st_size > 4 * 1024 * 1024):
+ oversize = image.width > opts.target_side_length or image.height > opts.target_side_length
+ if opts.export_for_4chan and (oversize or os.stat(fullfn).st_size > opts.img_downscale_threshold * 1024 * 1024):
ratio = image.width / image.height
if oversize and ratio > 1:
- image = image.resize((target_side_length, image.height * target_side_length // image.width), LANCZOS)
+ image = image.resize((round(opts.target_side_length), round(image.height * opts.target_side_length / image.width)), LANCZOS)
elif oversize:
- image = image.resize((image.width * target_side_length // image.height, target_side_length), LANCZOS)
+ image = image.resize((round(image.width * opts.target_side_length / image.height), round(opts.target_side_length)), LANCZOS)
- _atomically_save_image(image, fullfn_without_extension, ".jpg")
+ try:
+ _atomically_save_image(image, fullfn_without_extension, ".jpg")
+ except Exception as e:
+ errors.display(e, "saving image as downscaled JPG")
if opts.save_txt and info is not None:
txt_fullfn = f"{fullfn_without_extension}.txt"
@@ -631,6 +671,8 @@ Steps: {json_info["steps"]}, Sampler: {sampler}, CFG scale: {json_info["scale"]}
def image_data(data):
+ import gradio as gr
+
try:
image = Image.open(io.BytesIO(data))
textinfo, _ = read_info_from_image(image)
@@ -646,7 +688,7 @@ def image_data(data):
except Exception:
pass
- return '', None
+ return gr.update(), None
def flatten(img, bgcolor):
diff --git a/modules/img2img.py b/modules/img2img.py
index f813299c..56c846d6 100644
--- a/modules/img2img.py
+++ b/modules/img2img.py
@@ -4,7 +4,7 @@ import sys
import traceback
import numpy as np
-from PIL import Image, ImageOps, ImageFilter, ImageEnhance, ImageChops
+from PIL import Image, ImageOps, ImageFilter, ImageEnhance, ImageChops, UnidentifiedImageError
from modules import devices, sd_samplers
from modules.generation_parameters_copypaste import create_override_settings_dict
@@ -46,7 +46,10 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args):
if state.interrupted:
break
- img = Image.open(image)
+ try:
+ img = Image.open(image)
+ except UnidentifiedImageError:
+ continue
# Use the EXIF orientation of photos taken by smartphones.
img = ImageOps.exif_transpose(img)
p.init_images = [img] * p.batch_size
@@ -73,10 +76,12 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args):
if not save_normally:
os.makedirs(output_dir, exist_ok=True)
+ if processed_image.mode == 'RGBA':
+ processed_image = processed_image.convert("RGB")
processed_image.save(os.path.join(output_dir, filename))
-def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, *args):
+def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, selected_scale_tab: int, height: int, width: int, scale_by: float, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, *args):
override_settings = create_override_settings_dict(override_settings_texts)
is_batch = mode == 5
@@ -112,6 +117,12 @@ def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_s
if image is not None:
image = ImageOps.exif_transpose(image)
+ if selected_scale_tab == 1:
+ assert image, "Can't scale by because no image is selected"
+
+ width = int(image.width * scale_by)
+ height = int(image.height * scale_by)
+
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'
p = StableDiffusionProcessingImg2Img(
@@ -142,19 +153,21 @@ def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_s
inpainting_fill=inpainting_fill,
resize_mode=resize_mode,
denoising_strength=denoising_strength,
+ image_cfg_scale=image_cfg_scale,
inpaint_full_res=inpaint_full_res,
inpaint_full_res_padding=inpaint_full_res_padding,
inpainting_mask_invert=inpainting_mask_invert,
override_settings=override_settings,
)
- p.scripts = modules.scripts.scripts_txt2img
+ p.scripts = modules.scripts.scripts_img2img
p.script_args = args
if shared.cmd_opts.enable_console_prompts:
print(f"\nimg2img: {prompt}", file=shared.progress_print_out)
- p.extra_generation_params["Mask blur"] = mask_blur
+ if mask:
+ p.extra_generation_params["Mask blur"] = mask_blur
if is_batch:
assert not shared.cmd_opts.hide_ui_dir_config, "Launched with --hide-ui-dir-config, batch img2img disabled"
diff --git a/modules/interrogate.py b/modules/interrogate.py
index cbb80683..e1665708 100644
--- a/modules/interrogate.py
+++ b/modules/interrogate.py
@@ -32,7 +32,7 @@ def download_default_clip_interrogate_categories(content_dir):
category_types = ["artists", "flavors", "mediums", "movements"]
try:
- os.makedirs(tmpdir)
+ os.makedirs(tmpdir, exist_ok=True)
for category_type in category_types:
torch.hub.download_url_to_file(f"https://raw.githubusercontent.com/pharmapsychotic/clip-interrogator/main/clip_interrogator/data/{category_type}.txt", os.path.join(tmpdir, f"{category_type}.txt"))
os.rename(tmpdir, content_dir)
@@ -41,7 +41,7 @@ def download_default_clip_interrogate_categories(content_dir):
errors.display(e, "downloading default CLIP interrogate categories")
finally:
if os.path.exists(tmpdir):
- os.remove(tmpdir)
+ os.removedirs(tmpdir)
class InterrogateModels:
diff --git a/modules/lowvram.py b/modules/lowvram.py
index 042a0254..e254cc13 100644
--- a/modules/lowvram.py
+++ b/modules/lowvram.py
@@ -55,12 +55,12 @@ def setup_for_low_vram(sd_model, use_medvram):
if hasattr(sd_model.cond_stage_model, 'model'):
sd_model.cond_stage_model.transformer = sd_model.cond_stage_model.model
- # remove four big modules, cond, first_stage, depth (if applicable), and unet from the model and then
+ # remove several big modules: cond, first_stage, depth/embedder (if applicable), and unet from the model and then
# send the model to GPU. Then put modules back. the modules will be in CPU.
- stored = sd_model.cond_stage_model.transformer, sd_model.first_stage_model, getattr(sd_model, 'depth_model', None), sd_model.model
- sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.depth_model, sd_model.model = None, None, None, None
+ stored = sd_model.cond_stage_model.transformer, sd_model.first_stage_model, getattr(sd_model, 'depth_model', None), getattr(sd_model, 'embedder', None), sd_model.model
+ sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.depth_model, sd_model.embedder, sd_model.model = None, None, None, None, None
sd_model.to(devices.device)
- sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.depth_model, sd_model.model = stored
+ sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.depth_model, sd_model.embedder, sd_model.model = stored
# register hooks for those the first three models
sd_model.cond_stage_model.transformer.register_forward_pre_hook(send_me_to_gpu)
@@ -69,6 +69,8 @@ def setup_for_low_vram(sd_model, use_medvram):
sd_model.first_stage_model.decode = first_stage_model_decode_wrap
if sd_model.depth_model:
sd_model.depth_model.register_forward_pre_hook(send_me_to_gpu)
+ if sd_model.embedder:
+ sd_model.embedder.register_forward_pre_hook(send_me_to_gpu)
parents[sd_model.cond_stage_model.transformer] = sd_model.cond_stage_model
if hasattr(sd_model.cond_stage_model, 'model'):
diff --git a/modules/mac_specific.py b/modules/mac_specific.py
new file mode 100644
index 00000000..6fe8dea0
--- /dev/null
+++ b/modules/mac_specific.py
@@ -0,0 +1,59 @@
+import torch
+import platform
+from modules import paths
+from modules.sd_hijack_utils import CondFunc
+from packaging import version
+
+
+# has_mps is only available in nightly pytorch (for now) and macOS 12.3+.
+# check `getattr` and try it for compatibility
+def check_for_mps() -> bool:
+ if not getattr(torch, 'has_mps', False):
+ return False
+ try:
+ torch.zeros(1).to(torch.device("mps"))
+ return True
+ except Exception:
+ return False
+has_mps = check_for_mps()
+
+
+# MPS workaround for https://github.com/pytorch/pytorch/issues/89784
+def cumsum_fix(input, cumsum_func, *args, **kwargs):
+ if input.device.type == 'mps':
+ output_dtype = kwargs.get('dtype', input.dtype)
+ if output_dtype == torch.int64:
+ return cumsum_func(input.cpu(), *args, **kwargs).to(input.device)
+ elif output_dtype == torch.bool or cumsum_needs_int_fix and (output_dtype == torch.int8 or output_dtype == torch.int16):
+ return cumsum_func(input.to(torch.int32), *args, **kwargs).to(torch.int64)
+ return cumsum_func(input, *args, **kwargs)
+
+
+if has_mps:
+ # MPS fix for randn in torchsde
+ CondFunc('torchsde._brownian.brownian_interval._randn', lambda _, size, dtype, device, seed: torch.randn(size, dtype=dtype, device=torch.device("cpu"), generator=torch.Generator(torch.device("cpu")).manual_seed(int(seed))).to(device), lambda _, size, dtype, device, seed: device.type == 'mps')
+
+ if platform.mac_ver()[0].startswith("13.2."):
+ # MPS workaround for https://github.com/pytorch/pytorch/issues/95188, thanks to danieldk (https://github.com/explosion/curated-transformers/pull/124)
+ CondFunc('torch.nn.functional.linear', lambda _, input, weight, bias: (torch.matmul(input, weight.t()) + bias) if bias is not None else torch.matmul(input, weight.t()), lambda _, input, weight, bias: input.numel() > 10485760)
+
+ if version.parse(torch.__version__) < version.parse("1.13"):
+ # PyTorch 1.13 doesn't need these fixes but unfortunately is slower and has regressions that prevent training from working
+
+ # MPS workaround for https://github.com/pytorch/pytorch/issues/79383
+ CondFunc('torch.Tensor.to', lambda orig_func, self, *args, **kwargs: orig_func(self.contiguous(), *args, **kwargs),
+ lambda _, self, *args, **kwargs: self.device.type != 'mps' and (args and isinstance(args[0], torch.device) and args[0].type == 'mps' or isinstance(kwargs.get('device'), torch.device) and kwargs['device'].type == 'mps'))
+ # MPS workaround for https://github.com/pytorch/pytorch/issues/80800
+ CondFunc('torch.nn.functional.layer_norm', lambda orig_func, *args, **kwargs: orig_func(*([args[0].contiguous()] + list(args[1:])), **kwargs),
+ lambda _, *args, **kwargs: args and isinstance(args[0], torch.Tensor) and args[0].device.type == 'mps')
+ # MPS workaround for https://github.com/pytorch/pytorch/issues/90532
+ CondFunc('torch.Tensor.numpy', lambda orig_func, self, *args, **kwargs: orig_func(self.detach(), *args, **kwargs), lambda _, self, *args, **kwargs: self.requires_grad)
+ elif version.parse(torch.__version__) > version.parse("1.13.1"):
+ cumsum_needs_int_fix = not torch.Tensor([1,2]).to(torch.device("mps")).equal(torch.ShortTensor([1,1]).to(torch.device("mps")).cumsum(0))
+ cumsum_fix_func = lambda orig_func, input, *args, **kwargs: cumsum_fix(input, orig_func, *args, **kwargs)
+ CondFunc('torch.cumsum', cumsum_fix_func, None)
+ CondFunc('torch.Tensor.cumsum', cumsum_fix_func, None)
+ CondFunc('torch.narrow', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).clone(), None)
+ if version.parse(torch.__version__) == version.parse("2.0"):
+ # MPS workaround for https://github.com/pytorch/pytorch/issues/96113
+ CondFunc('torch.nn.functional.layer_norm', lambda orig_func, x, normalized_shape, weight, bias, eps, **kwargs: orig_func(x.float(), normalized_shape, weight.float() if weight is not None else None, bias.float() if bias is not None else bias, eps).to(x.dtype), lambda *args, **kwargs: len(args) == 6)
diff --git a/modules/memmon.py b/modules/memmon.py
index a7060f58..4018edcc 100644
--- a/modules/memmon.py
+++ b/modules/memmon.py
@@ -23,12 +23,16 @@ class MemUsageMonitor(threading.Thread):
self.data = defaultdict(int)
try:
- torch.cuda.mem_get_info()
+ self.cuda_mem_get_info()
torch.cuda.memory_stats(self.device)
except Exception as e: # AMD or whatever
print(f"Warning: caught exception '{e}', memory monitor disabled")
self.disabled = True
+ def cuda_mem_get_info(self):
+ index = self.device.index if self.device.index is not None else torch.cuda.current_device()
+ return torch.cuda.mem_get_info(index)
+
def run(self):
if self.disabled:
return
@@ -43,10 +47,10 @@ class MemUsageMonitor(threading.Thread):
self.run_flag.clear()
continue
- self.data["min_free"] = torch.cuda.mem_get_info()[0]
+ self.data["min_free"] = self.cuda_mem_get_info()[0]
while self.run_flag.is_set():
- free, total = torch.cuda.mem_get_info() # calling with self.device errors, torch bug?
+ free, total = self.cuda_mem_get_info()
self.data["min_free"] = min(self.data["min_free"], free)
time.sleep(1 / self.opts.memmon_poll_rate)
@@ -70,7 +74,7 @@ class MemUsageMonitor(threading.Thread):
def read(self):
if not self.disabled:
- free, total = torch.cuda.mem_get_info()
+ free, total = self.cuda_mem_get_info()
self.data["free"] = free
self.data["total"] = total
diff --git a/modules/modelloader.py b/modules/modelloader.py
index e9aa514e..522affc6 100644
--- a/modules/modelloader.py
+++ b/modules/modelloader.py
@@ -4,9 +4,8 @@ import shutil
import importlib
from urllib.parse import urlparse
-from basicsr.utils.download_util import load_file_from_url
from modules import shared
-from modules.upscaler import Upscaler
+from modules.upscaler import Upscaler, UpscalerLanczos, UpscalerNearest, UpscalerNone
from modules.paths import script_path, models_path
@@ -45,6 +44,9 @@ def load_models(model_path: str, model_url: str = None, command_path: str = None
full_path = file
if os.path.isdir(full_path):
continue
+ if os.path.islink(full_path) and not os.path.exists(full_path):
+ print(f"Skipping broken symlink: {full_path}")
+ continue
if ext_blacklist is not None and any([full_path.endswith(x) for x in ext_blacklist]):
continue
if len(ext_filter) != 0:
@@ -56,6 +58,7 @@ def load_models(model_path: str, model_url: str = None, command_path: str = None
if model_url is not None and len(output) == 0:
if download_name is not None:
+ from basicsr.utils.download_util import load_file_from_url
dl = load_file_from_url(model_url, model_path, True, download_name)
output.append(dl)
else:
@@ -166,4 +169,8 @@ def load_upscalers():
scaler = cls(commandline_options.get(cmd_name, None))
datas += scaler.scalers
- shared.sd_upscalers = datas
+ shared.sd_upscalers = sorted(
+ datas,
+ # Special case for UpscalerNone keeps it at the beginning of the list.
+ key=lambda x: x.name.lower() if not isinstance(x.scaler, (UpscalerNone, UpscalerLanczos, UpscalerNearest)) else ""
+ )
diff --git a/modules/models/diffusion/uni_pc/__init__.py b/modules/models/diffusion/uni_pc/__init__.py
new file mode 100644
index 00000000..e1265e3f
--- /dev/null
+++ b/modules/models/diffusion/uni_pc/__init__.py
@@ -0,0 +1 @@
+from .sampler import UniPCSampler
diff --git a/modules/models/diffusion/uni_pc/sampler.py b/modules/models/diffusion/uni_pc/sampler.py
new file mode 100644
index 00000000..a241c8a7
--- /dev/null
+++ b/modules/models/diffusion/uni_pc/sampler.py
@@ -0,0 +1,100 @@
+"""SAMPLING ONLY."""
+
+import torch
+
+from .uni_pc import NoiseScheduleVP, model_wrapper, UniPC
+from modules import shared, devices
+
+
+class UniPCSampler(object):
+ def __init__(self, model, **kwargs):
+ super().__init__()
+ self.model = model
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device)
+ self.before_sample = None
+ self.after_sample = None
+ self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod))
+
+ def register_buffer(self, name, attr):
+ if type(attr) == torch.Tensor:
+ if attr.device != devices.device:
+ attr = attr.to(devices.device)
+ setattr(self, name, attr)
+
+ def set_hooks(self, before_sample, after_sample, after_update):
+ self.before_sample = before_sample
+ self.after_sample = after_sample
+ self.after_update = after_update
+
+ @torch.no_grad()
+ def sample(self,
+ S,
+ batch_size,
+ shape,
+ conditioning=None,
+ callback=None,
+ normals_sequence=None,
+ img_callback=None,
+ quantize_x0=False,
+ eta=0.,
+ mask=None,
+ x0=None,
+ temperature=1.,
+ noise_dropout=0.,
+ score_corrector=None,
+ corrector_kwargs=None,
+ verbose=True,
+ x_T=None,
+ log_every_t=100,
+ unconditional_guidance_scale=1.,
+ unconditional_conditioning=None,
+ # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
+ **kwargs
+ ):
+ if conditioning is not None:
+ if isinstance(conditioning, dict):
+ ctmp = conditioning[list(conditioning.keys())[0]]
+ while isinstance(ctmp, list): ctmp = ctmp[0]
+ cbs = ctmp.shape[0]
+ if cbs != batch_size:
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
+
+ elif isinstance(conditioning, list):
+ for ctmp in conditioning:
+ if ctmp.shape[0] != batch_size:
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
+
+ else:
+ if conditioning.shape[0] != batch_size:
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
+
+ # sampling
+ C, H, W = shape
+ size = (batch_size, C, H, W)
+ # print(f'Data shape for UniPC sampling is {size}')
+
+ device = self.model.betas.device
+ if x_T is None:
+ img = torch.randn(size, device=device)
+ else:
+ img = x_T
+
+ ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)
+
+ # SD 1.X is "noise", SD 2.X is "v"
+ model_type = "v" if self.model.parameterization == "v" else "noise"
+
+ model_fn = model_wrapper(
+ lambda x, t, c: self.model.apply_model(x, t, c),
+ ns,
+ model_type=model_type,
+ guidance_type="classifier-free",
+ #condition=conditioning,
+ #unconditional_condition=unconditional_conditioning,
+ guidance_scale=unconditional_guidance_scale,
+ )
+
+ uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, variant=shared.opts.uni_pc_variant, condition=conditioning, unconditional_condition=unconditional_conditioning, before_sample=self.before_sample, after_sample=self.after_sample, after_update=self.after_update)
+ x = uni_pc.sample(img, steps=S, skip_type=shared.opts.uni_pc_skip_type, method="multistep", order=shared.opts.uni_pc_order, lower_order_final=shared.opts.uni_pc_lower_order_final)
+
+ return x.to(device), None
diff --git a/modules/models/diffusion/uni_pc/uni_pc.py b/modules/models/diffusion/uni_pc/uni_pc.py
new file mode 100644
index 00000000..eb5f4e76
--- /dev/null
+++ b/modules/models/diffusion/uni_pc/uni_pc.py
@@ -0,0 +1,857 @@
+import torch
+import torch.nn.functional as F
+import math
+from tqdm.auto import trange
+
+
+class NoiseScheduleVP:
+ def __init__(
+ self,
+ schedule='discrete',
+ betas=None,
+ alphas_cumprod=None,
+ continuous_beta_0=0.1,
+ continuous_beta_1=20.,
+ ):
+ """Create a wrapper class for the forward SDE (VP type).
+
+ ***
+ Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
+ We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
+ ***
+
+ The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
+ We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
+ Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
+
+ log_alpha_t = self.marginal_log_mean_coeff(t)
+ sigma_t = self.marginal_std(t)
+ lambda_t = self.marginal_lambda(t)
+
+ Moreover, as lambda(t) is an invertible function, we also support its inverse function:
+
+ t = self.inverse_lambda(lambda_t)
+
+ ===============================================================
+
+ We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
+
+ 1. For discrete-time DPMs:
+
+ For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
+ t_i = (i + 1) / N
+ e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
+ We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
+
+ Args:
+ betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
+ alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
+
+ Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
+
+ **Important**: Please pay special attention for the args for `alphas_cumprod`:
+ The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
+ q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
+ Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
+ alpha_{t_n} = \sqrt{\hat{alpha_n}},
+ and
+ log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
+
+
+ 2. For continuous-time DPMs:
+
+ We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
+ schedule are the default settings in DDPM and improved-DDPM:
+
+ Args:
+ beta_min: A `float` number. The smallest beta for the linear schedule.
+ beta_max: A `float` number. The largest beta for the linear schedule.
+ cosine_s: A `float` number. The hyperparameter in the cosine schedule.
+ cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
+ T: A `float` number. The ending time of the forward process.
+
+ ===============================================================
+
+ Args:
+ schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
+ 'linear' or 'cosine' for continuous-time DPMs.
+ Returns:
+ A wrapper object of the forward SDE (VP type).
+
+ ===============================================================
+
+ Example:
+
+ # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
+ >>> ns = NoiseScheduleVP('discrete', betas=betas)
+
+ # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
+ >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
+
+ # For continuous-time DPMs (VPSDE), linear schedule:
+ >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
+
+ """
+
+ if schedule not in ['discrete', 'linear', 'cosine']:
+ raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule))
+
+ self.schedule = schedule
+ if schedule == 'discrete':
+ if betas is not None:
+ log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
+ else:
+ assert alphas_cumprod is not None
+ log_alphas = 0.5 * torch.log(alphas_cumprod)
+ self.total_N = len(log_alphas)
+ self.T = 1.
+ self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
+ self.log_alpha_array = log_alphas.reshape((1, -1,))
+ else:
+ self.total_N = 1000
+ self.beta_0 = continuous_beta_0
+ self.beta_1 = continuous_beta_1
+ self.cosine_s = 0.008
+ self.cosine_beta_max = 999.
+ self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
+ self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
+ self.schedule = schedule
+ if schedule == 'cosine':
+ # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
+ # Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
+ self.T = 0.9946
+ else:
+ self.T = 1.
+
+ def marginal_log_mean_coeff(self, t):
+ """
+ Compute log(alpha_t) of a given continuous-time label t in [0, T].
+ """
+ if self.schedule == 'discrete':
+ return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1))
+ elif self.schedule == 'linear':
+ return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
+ elif self.schedule == 'cosine':
+ log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
+ log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
+ return log_alpha_t
+
+ def marginal_alpha(self, t):
+ """
+ Compute alpha_t of a given continuous-time label t in [0, T].
+ """
+ return torch.exp(self.marginal_log_mean_coeff(t))
+
+ def marginal_std(self, t):
+ """
+ Compute sigma_t of a given continuous-time label t in [0, T].
+ """
+ return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
+
+ def marginal_lambda(self, t):
+ """
+ Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
+ """
+ log_mean_coeff = self.marginal_log_mean_coeff(t)
+ log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
+ return log_mean_coeff - log_std
+
+ def inverse_lambda(self, lamb):
+ """
+ Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
+ """
+ if self.schedule == 'linear':
+ tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
+ Delta = self.beta_0**2 + tmp
+ return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
+ elif self.schedule == 'discrete':
+ log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
+ t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]))
+ return t.reshape((-1,))
+ else:
+ log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
+ t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
+ t = t_fn(log_alpha)
+ return t
+
+
+def model_wrapper(
+ model,
+ noise_schedule,
+ model_type="noise",
+ model_kwargs={},
+ guidance_type="uncond",
+ #condition=None,
+ #unconditional_condition=None,
+ guidance_scale=1.,
+ classifier_fn=None,
+ classifier_kwargs={},
+):
+ """Create a wrapper function for the noise prediction model.
+
+ DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
+ firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
+
+ We support four types of the diffusion model by setting `model_type`:
+
+ 1. "noise": noise prediction model. (Trained by predicting noise).
+
+ 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
+
+ 3. "v": velocity prediction model. (Trained by predicting the velocity).
+ The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
+
+ [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
+ arXiv preprint arXiv:2202.00512 (2022).
+ [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
+ arXiv preprint arXiv:2210.02303 (2022).
+
+ 4. "score": marginal score function. (Trained by denoising score matching).
+ Note that the score function and the noise prediction model follows a simple relationship:
+ ```
+ noise(x_t, t) = -sigma_t * score(x_t, t)
+ ```
+
+ We support three types of guided sampling by DPMs by setting `guidance_type`:
+ 1. "uncond": unconditional sampling by DPMs.
+ The input `model` has the following format:
+ ``
+ model(x, t_input, **model_kwargs) -> noise | x_start | v | score
+ ``
+
+ 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
+ The input `model` has the following format:
+ ``
+ model(x, t_input, **model_kwargs) -> noise | x_start | v | score
+ ``
+
+ The input `classifier_fn` has the following format:
+ ``
+ classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
+ ``
+
+ [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
+ in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
+
+ 3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
+ The input `model` has the following format:
+ ``
+ model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
+ ``
+ And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
+
+ [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
+ arXiv preprint arXiv:2207.12598 (2022).
+
+
+ The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
+ or continuous-time labels (i.e. epsilon to T).
+
+ We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
+ ``
+ def model_fn(x, t_continuous) -> noise:
+ t_input = get_model_input_time(t_continuous)
+ return noise_pred(model, x, t_input, **model_kwargs)
+ ``
+ where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
+
+ ===============================================================
+
+ Args:
+ model: A diffusion model with the corresponding format described above.
+ noise_schedule: A noise schedule object, such as NoiseScheduleVP.
+ model_type: A `str`. The parameterization type of the diffusion model.
+ "noise" or "x_start" or "v" or "score".
+ model_kwargs: A `dict`. A dict for the other inputs of the model function.
+ guidance_type: A `str`. The type of the guidance for sampling.
+ "uncond" or "classifier" or "classifier-free".
+ condition: A pytorch tensor. The condition for the guided sampling.
+ Only used for "classifier" or "classifier-free" guidance type.
+ unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
+ Only used for "classifier-free" guidance type.
+ guidance_scale: A `float`. The scale for the guided sampling.
+ classifier_fn: A classifier function. Only used for the classifier guidance.
+ classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
+ Returns:
+ A noise prediction model that accepts the noised data and the continuous time as the inputs.
+ """
+
+ def get_model_input_time(t_continuous):
+ """
+ Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
+ For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
+ For continuous-time DPMs, we just use `t_continuous`.
+ """
+ if noise_schedule.schedule == 'discrete':
+ return (t_continuous - 1. / noise_schedule.total_N) * 1000.
+ else:
+ return t_continuous
+
+ def noise_pred_fn(x, t_continuous, cond=None):
+ if t_continuous.reshape((-1,)).shape[0] == 1:
+ t_continuous = t_continuous.expand((x.shape[0]))
+ t_input = get_model_input_time(t_continuous)
+ if cond is None:
+ output = model(x, t_input, None, **model_kwargs)
+ else:
+ output = model(x, t_input, cond, **model_kwargs)
+ if model_type == "noise":
+ return output
+ elif model_type == "x_start":
+ alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
+ dims = x.dim()
+ return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
+ elif model_type == "v":
+ alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
+ dims = x.dim()
+ return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
+ elif model_type == "score":
+ sigma_t = noise_schedule.marginal_std(t_continuous)
+ dims = x.dim()
+ return -expand_dims(sigma_t, dims) * output
+
+ def cond_grad_fn(x, t_input, condition):
+ """
+ Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
+ """
+ with torch.enable_grad():
+ x_in = x.detach().requires_grad_(True)
+ log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
+ return torch.autograd.grad(log_prob.sum(), x_in)[0]
+
+ def model_fn(x, t_continuous, condition, unconditional_condition):
+ """
+ The noise predicition model function that is used for DPM-Solver.
+ """
+ if t_continuous.reshape((-1,)).shape[0] == 1:
+ t_continuous = t_continuous.expand((x.shape[0]))
+ if guidance_type == "uncond":
+ return noise_pred_fn(x, t_continuous)
+ elif guidance_type == "classifier":
+ assert classifier_fn is not None
+ t_input = get_model_input_time(t_continuous)
+ cond_grad = cond_grad_fn(x, t_input, condition)
+ sigma_t = noise_schedule.marginal_std(t_continuous)
+ noise = noise_pred_fn(x, t_continuous)
+ return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
+ elif guidance_type == "classifier-free":
+ if guidance_scale == 1. or unconditional_condition is None:
+ return noise_pred_fn(x, t_continuous, cond=condition)
+ else:
+ x_in = torch.cat([x] * 2)
+ t_in = torch.cat([t_continuous] * 2)
+ if isinstance(condition, dict):
+ assert isinstance(unconditional_condition, dict)
+ c_in = dict()
+ for k in condition:
+ if isinstance(condition[k], list):
+ c_in[k] = [torch.cat([
+ unconditional_condition[k][i],
+ condition[k][i]]) for i in range(len(condition[k]))]
+ else:
+ c_in[k] = torch.cat([
+ unconditional_condition[k],
+ condition[k]])
+ elif isinstance(condition, list):
+ c_in = list()
+ assert isinstance(unconditional_condition, list)
+ for i in range(len(condition)):
+ c_in.append(torch.cat([unconditional_condition[i], condition[i]]))
+ else:
+ c_in = torch.cat([unconditional_condition, condition])
+ noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
+ return noise_uncond + guidance_scale * (noise - noise_uncond)
+
+ assert model_type in ["noise", "x_start", "v"]
+ assert guidance_type in ["uncond", "classifier", "classifier-free"]
+ return model_fn
+
+
+class UniPC:
+ def __init__(
+ self,
+ model_fn,
+ noise_schedule,
+ predict_x0=True,
+ thresholding=False,
+ max_val=1.,
+ variant='bh1',
+ condition=None,
+ unconditional_condition=None,
+ before_sample=None,
+ after_sample=None,
+ after_update=None
+ ):
+ """Construct a UniPC.
+
+ We support both data_prediction and noise_prediction.
+ """
+ self.model_fn_ = model_fn
+ self.noise_schedule = noise_schedule
+ self.variant = variant
+ self.predict_x0 = predict_x0
+ self.thresholding = thresholding
+ self.max_val = max_val
+ self.condition = condition
+ self.unconditional_condition = unconditional_condition
+ self.before_sample = before_sample
+ self.after_sample = after_sample
+ self.after_update = after_update
+
+ def dynamic_thresholding_fn(self, x0, t=None):
+ """
+ The dynamic thresholding method.
+ """
+ dims = x0.dim()
+ p = self.dynamic_thresholding_ratio
+ s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
+ s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims)
+ x0 = torch.clamp(x0, -s, s) / s
+ return x0
+
+ def model(self, x, t):
+ cond = self.condition
+ uncond = self.unconditional_condition
+ if self.before_sample is not None:
+ x, t, cond, uncond = self.before_sample(x, t, cond, uncond)
+ res = self.model_fn_(x, t, cond, uncond)
+ if self.after_sample is not None:
+ x, t, cond, uncond, res = self.after_sample(x, t, cond, uncond, res)
+
+ if isinstance(res, tuple):
+ # (None, pred_x0)
+ res = res[1]
+
+ return res
+
+ def noise_prediction_fn(self, x, t):
+ """
+ Return the noise prediction model.
+ """
+ return self.model(x, t)
+
+ def data_prediction_fn(self, x, t):
+ """
+ Return the data prediction model (with thresholding).
+ """
+ noise = self.noise_prediction_fn(x, t)
+ dims = x.dim()
+ alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
+ x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
+ if self.thresholding:
+ p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
+ s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
+ s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
+ x0 = torch.clamp(x0, -s, s) / s
+ return x0
+
+ def model_fn(self, x, t):
+ """
+ Convert the model to the noise prediction model or the data prediction model.
+ """
+ if self.predict_x0:
+ return self.data_prediction_fn(x, t)
+ else:
+ return self.noise_prediction_fn(x, t)
+
+ def get_time_steps(self, skip_type, t_T, t_0, N, device):
+ """Compute the intermediate time steps for sampling.
+ """
+ if skip_type == 'logSNR':
+ lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
+ lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
+ logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
+ return self.noise_schedule.inverse_lambda(logSNR_steps)
+ elif skip_type == 'time_uniform':
+ return torch.linspace(t_T, t_0, N + 1).to(device)
+ elif skip_type == 'time_quadratic':
+ t_order = 2
+ t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device)
+ return t
+ else:
+ raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
+
+ def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
+ """
+ Get the order of each step for sampling by the singlestep DPM-Solver.
+ """
+ if order == 3:
+ K = steps // 3 + 1
+ if steps % 3 == 0:
+ orders = [3,] * (K - 2) + [2, 1]
+ elif steps % 3 == 1:
+ orders = [3,] * (K - 1) + [1]
+ else:
+ orders = [3,] * (K - 1) + [2]
+ elif order == 2:
+ if steps % 2 == 0:
+ K = steps // 2
+ orders = [2,] * K
+ else:
+ K = steps // 2 + 1
+ orders = [2,] * (K - 1) + [1]
+ elif order == 1:
+ K = steps
+ orders = [1,] * steps
+ else:
+ raise ValueError("'order' must be '1' or '2' or '3'.")
+ if skip_type == 'logSNR':
+ # To reproduce the results in DPM-Solver paper
+ timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
+ else:
+ timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders), 0).to(device)]
+ return timesteps_outer, orders
+
+ def denoise_to_zero_fn(self, x, s):
+ """
+ Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
+ """
+ return self.data_prediction_fn(x, s)
+
+ def multistep_uni_pc_update(self, x, model_prev_list, t_prev_list, t, order, **kwargs):
+ if len(t.shape) == 0:
+ t = t.view(-1)
+ if 'bh' in self.variant:
+ return self.multistep_uni_pc_bh_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
+ else:
+ assert self.variant == 'vary_coeff'
+ return self.multistep_uni_pc_vary_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
+
+ def multistep_uni_pc_vary_update(self, x, model_prev_list, t_prev_list, t, order, use_corrector=True):
+ #print(f'using unified predictor-corrector with order {order} (solver type: vary coeff)')
+ ns = self.noise_schedule
+ assert order <= len(model_prev_list)
+
+ # first compute rks
+ t_prev_0 = t_prev_list[-1]
+ lambda_prev_0 = ns.marginal_lambda(t_prev_0)
+ lambda_t = ns.marginal_lambda(t)
+ model_prev_0 = model_prev_list[-1]
+ sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
+ log_alpha_t = ns.marginal_log_mean_coeff(t)
+ alpha_t = torch.exp(log_alpha_t)
+
+ h = lambda_t - lambda_prev_0
+
+ rks = []
+ D1s = []
+ for i in range(1, order):
+ t_prev_i = t_prev_list[-(i + 1)]
+ model_prev_i = model_prev_list[-(i + 1)]
+ lambda_prev_i = ns.marginal_lambda(t_prev_i)
+ rk = (lambda_prev_i - lambda_prev_0) / h
+ rks.append(rk)
+ D1s.append((model_prev_i - model_prev_0) / rk)
+
+ rks.append(1.)
+ rks = torch.tensor(rks, device=x.device)
+
+ K = len(rks)
+ # build C matrix
+ C = []
+
+ col = torch.ones_like(rks)
+ for k in range(1, K + 1):
+ C.append(col)
+ col = col * rks / (k + 1)
+ C = torch.stack(C, dim=1)
+
+ if len(D1s) > 0:
+ D1s = torch.stack(D1s, dim=1) # (B, K)
+ C_inv_p = torch.linalg.inv(C[:-1, :-1])
+ A_p = C_inv_p
+
+ if use_corrector:
+ #print('using corrector')
+ C_inv = torch.linalg.inv(C)
+ A_c = C_inv
+
+ hh = -h if self.predict_x0 else h
+ h_phi_1 = torch.expm1(hh)
+ h_phi_ks = []
+ factorial_k = 1
+ h_phi_k = h_phi_1
+ for k in range(1, K + 2):
+ h_phi_ks.append(h_phi_k)
+ h_phi_k = h_phi_k / hh - 1 / factorial_k
+ factorial_k *= (k + 1)
+
+ model_t = None
+ if self.predict_x0:
+ x_t_ = (
+ sigma_t / sigma_prev_0 * x
+ - alpha_t * h_phi_1 * model_prev_0
+ )
+ # now predictor
+ x_t = x_t_
+ if len(D1s) > 0:
+ # compute the residuals for predictor
+ for k in range(K - 1):
+ x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
+ # now corrector
+ if use_corrector:
+ model_t = self.model_fn(x_t, t)
+ D1_t = (model_t - model_prev_0)
+ x_t = x_t_
+ k = 0
+ for k in range(K - 1):
+ x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
+ x_t = x_t - alpha_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
+ else:
+ log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
+ x_t_ = (
+ (torch.exp(log_alpha_t - log_alpha_prev_0)) * x
+ - (sigma_t * h_phi_1) * model_prev_0
+ )
+ # now predictor
+ x_t = x_t_
+ if len(D1s) > 0:
+ # compute the residuals for predictor
+ for k in range(K - 1):
+ x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
+ # now corrector
+ if use_corrector:
+ model_t = self.model_fn(x_t, t)
+ D1_t = (model_t - model_prev_0)
+ x_t = x_t_
+ k = 0
+ for k in range(K - 1):
+ x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
+ x_t = x_t - sigma_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
+ return x_t, model_t
+
+ def multistep_uni_pc_bh_update(self, x, model_prev_list, t_prev_list, t, order, x_t=None, use_corrector=True):
+ #print(f'using unified predictor-corrector with order {order} (solver type: B(h))')
+ ns = self.noise_schedule
+ assert order <= len(model_prev_list)
+ dims = x.dim()
+
+ # first compute rks
+ t_prev_0 = t_prev_list[-1]
+ lambda_prev_0 = ns.marginal_lambda(t_prev_0)
+ lambda_t = ns.marginal_lambda(t)
+ model_prev_0 = model_prev_list[-1]
+ sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
+ log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
+ alpha_t = torch.exp(log_alpha_t)
+
+ h = lambda_t - lambda_prev_0
+
+ rks = []
+ D1s = []
+ for i in range(1, order):
+ t_prev_i = t_prev_list[-(i + 1)]
+ model_prev_i = model_prev_list[-(i + 1)]
+ lambda_prev_i = ns.marginal_lambda(t_prev_i)
+ rk = ((lambda_prev_i - lambda_prev_0) / h)[0]
+ rks.append(rk)
+ D1s.append((model_prev_i - model_prev_0) / rk)
+
+ rks.append(1.)
+ rks = torch.tensor(rks, device=x.device)
+
+ R = []
+ b = []
+
+ hh = -h[0] if self.predict_x0 else h[0]
+ h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
+ h_phi_k = h_phi_1 / hh - 1
+
+ factorial_i = 1
+
+ if self.variant == 'bh1':
+ B_h = hh
+ elif self.variant == 'bh2':
+ B_h = torch.expm1(hh)
+ else:
+ raise NotImplementedError()
+
+ for i in range(1, order + 1):
+ R.append(torch.pow(rks, i - 1))
+ b.append(h_phi_k * factorial_i / B_h)
+ factorial_i *= (i + 1)
+ h_phi_k = h_phi_k / hh - 1 / factorial_i
+
+ R = torch.stack(R)
+ b = torch.tensor(b, device=x.device)
+
+ # now predictor
+ use_predictor = len(D1s) > 0 and x_t is None
+ if len(D1s) > 0:
+ D1s = torch.stack(D1s, dim=1) # (B, K)
+ if x_t is None:
+ # for order 2, we use a simplified version
+ if order == 2:
+ rhos_p = torch.tensor([0.5], device=b.device)
+ else:
+ rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
+ else:
+ D1s = None
+
+ if use_corrector:
+ #print('using corrector')
+ # for order 1, we use a simplified version
+ if order == 1:
+ rhos_c = torch.tensor([0.5], device=b.device)
+ else:
+ rhos_c = torch.linalg.solve(R, b)
+
+ model_t = None
+ if self.predict_x0:
+ x_t_ = (
+ expand_dims(sigma_t / sigma_prev_0, dims) * x
+ - expand_dims(alpha_t * h_phi_1, dims)* model_prev_0
+ )
+
+ if x_t is None:
+ if use_predictor:
+ pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
+ else:
+ pred_res = 0
+ x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * pred_res
+
+ if use_corrector:
+ model_t = self.model_fn(x_t, t)
+ if D1s is not None:
+ corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
+ else:
+ corr_res = 0
+ D1_t = (model_t - model_prev_0)
+ x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
+ else:
+ x_t_ = (
+ expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
+ - expand_dims(sigma_t * h_phi_1, dims) * model_prev_0
+ )
+ if x_t is None:
+ if use_predictor:
+ pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
+ else:
+ pred_res = 0
+ x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * pred_res
+
+ if use_corrector:
+ model_t = self.model_fn(x_t, t)
+ if D1s is not None:
+ corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
+ else:
+ corr_res = 0
+ D1_t = (model_t - model_prev_0)
+ x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
+ return x_t, model_t
+
+
+ def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
+ method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
+ atol=0.0078, rtol=0.05, corrector=False,
+ ):
+ t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
+ t_T = self.noise_schedule.T if t_start is None else t_start
+ device = x.device
+ if method == 'multistep':
+ assert steps >= order, "UniPC order must be < sampling steps"
+ timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
+ #print(f"Running UniPC Sampling with {timesteps.shape[0]} timesteps, order {order}")
+ assert timesteps.shape[0] - 1 == steps
+ with torch.no_grad():
+ vec_t = timesteps[0].expand((x.shape[0]))
+ model_prev_list = [self.model_fn(x, vec_t)]
+ t_prev_list = [vec_t]
+ # Init the first `order` values by lower order multistep DPM-Solver.
+ for init_order in range(1, order):
+ vec_t = timesteps[init_order].expand(x.shape[0])
+ x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, init_order, use_corrector=True)
+ if model_x is None:
+ model_x = self.model_fn(x, vec_t)
+ if self.after_update is not None:
+ self.after_update(x, model_x)
+ model_prev_list.append(model_x)
+ t_prev_list.append(vec_t)
+ for step in trange(order, steps + 1):
+ vec_t = timesteps[step].expand(x.shape[0])
+ if lower_order_final:
+ step_order = min(order, steps + 1 - step)
+ else:
+ step_order = order
+ #print('this step order:', step_order)
+ if step == steps:
+ #print('do not run corrector at the last step')
+ use_corrector = False
+ else:
+ use_corrector = True
+ x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, step_order, use_corrector=use_corrector)
+ if self.after_update is not None:
+ self.after_update(x, model_x)
+ for i in range(order - 1):
+ t_prev_list[i] = t_prev_list[i + 1]
+ model_prev_list[i] = model_prev_list[i + 1]
+ t_prev_list[-1] = vec_t
+ # We do not need to evaluate the final model value.
+ if step < steps:
+ if model_x is None:
+ model_x = self.model_fn(x, vec_t)
+ model_prev_list[-1] = model_x
+ else:
+ raise NotImplementedError()
+ if denoise_to_zero:
+ x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
+ return x
+
+
+#############################################################
+# other utility functions
+#############################################################
+
+def interpolate_fn(x, xp, yp):
+ """
+ A piecewise linear function y = f(x), using xp and yp as keypoints.
+ We implement f(x) in a differentiable way (i.e. applicable for autograd).
+ The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
+
+ Args:
+ x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
+ xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
+ yp: PyTorch tensor with shape [C, K].
+ Returns:
+ The function values f(x), with shape [N, C].
+ """
+ N, K = x.shape[0], xp.shape[1]
+ all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
+ sorted_all_x, x_indices = torch.sort(all_x, dim=2)
+ x_idx = torch.argmin(x_indices, dim=2)
+ cand_start_idx = x_idx - 1
+ start_idx = torch.where(
+ torch.eq(x_idx, 0),
+ torch.tensor(1, device=x.device),
+ torch.where(
+ torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
+ ),
+ )
+ end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
+ start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
+ end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
+ start_idx2 = torch.where(
+ torch.eq(x_idx, 0),
+ torch.tensor(0, device=x.device),
+ torch.where(
+ torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
+ ),
+ )
+ y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
+ start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
+ end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
+ cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
+ return cand
+
+
+def expand_dims(v, dims):
+ """
+ Expand the tensor `v` to the dim `dims`.
+
+ Args:
+ `v`: a PyTorch tensor with shape [N].
+ `dim`: a `int`.
+ Returns:
+ a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
+ """
+ return v[(...,) + (None,)*(dims - 1)]
diff --git a/modules/ngrok.py b/modules/ngrok.py
index 3df2c06b..1ad7989b 100644
--- a/modules/ngrok.py
+++ b/modules/ngrok.py
@@ -13,6 +13,18 @@ def connect(token, port, region):
config = conf.PyngrokConfig(
auth_token=token, region=region
)
+
+ # Guard for existing tunnels
+ existing = ngrok.get_tunnels(pyngrok_config=config)
+ if existing:
+ for established in existing:
+ # Extra configuration in the case that the user is also using ngrok for other tunnels
+ if established.config['addr'][-4:] == str(port):
+ public_url = existing[0].public_url
+ print(f'ngrok has already been connected to localhost:{port}! URL: {public_url}\n'
+ 'You can use this link after the launch is complete.')
+ return
+
try:
if account is None:
public_url = ngrok.connect(port, pyngrok_config=config, bind_tls=True).public_url
diff --git a/modules/paths.py b/modules/paths.py
index d991cc71..0e1e00e7 100644
--- a/modules/paths.py
+++ b/modules/paths.py
@@ -1,16 +1,9 @@
-import argparse
import os
import sys
-import modules.safe
+from modules.paths_internal import models_path, script_path, data_path, extensions_dir, extensions_builtin_dir
-script_path = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
+import modules.safe
-# Parse the --data-dir flag first so we can use it as a base for our other argument default values
-parser = argparse.ArgumentParser(add_help=False)
-parser.add_argument("--data-dir", type=str, default=os.path.dirname(os.path.dirname(os.path.realpath(__file__))), help="base path where all user data is stored",)
-cmd_opts_pre = parser.parse_known_args()[0]
-data_path = cmd_opts_pre.data_dir
-models_path = os.path.join(data_path, "models")
# data_path = cmd_opts_pre.data
sys.path.insert(0, script_path)
diff --git a/modules/paths_internal.py b/modules/paths_internal.py
new file mode 100644
index 00000000..6765bafe
--- /dev/null
+++ b/modules/paths_internal.py
@@ -0,0 +1,23 @@
+"""this module defines internal paths used by program and is safe to import before dependencies are installed in launch.py"""
+
+import argparse
+import os
+
+script_path = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
+
+sd_configs_path = os.path.join(script_path, "configs")
+sd_default_config = os.path.join(sd_configs_path, "v1-inference.yaml")
+sd_model_file = os.path.join(script_path, 'model.ckpt')
+default_sd_model_file = sd_model_file
+
+# Parse the --data-dir flag first so we can use it as a base for our other argument default values
+parser_pre = argparse.ArgumentParser(add_help=False)
+parser_pre.add_argument("--data-dir", type=str, default=os.path.dirname(os.path.dirname(os.path.realpath(__file__))), help="base path where all user data is stored",)
+cmd_opts_pre = parser_pre.parse_known_args()[0]
+
+data_path = cmd_opts_pre.data_dir
+
+models_path = os.path.join(data_path, "models")
+extensions_dir = os.path.join(data_path, "extensions")
+extensions_builtin_dir = os.path.join(script_path, "extensions-builtin")
+config_states_dir = os.path.join(script_path, "config_states")
diff --git a/modules/postprocessing.py b/modules/postprocessing.py
index 09d8e605..736315e2 100644
--- a/modules/postprocessing.py
+++ b/modules/postprocessing.py
@@ -18,9 +18,14 @@ def run_postprocessing(extras_mode, image, image_folder, input_dir, output_dir,
if extras_mode == 1:
for img in image_folder:
- image = Image.open(img)
+ if isinstance(img, Image.Image):
+ image = img
+ fn = ''
+ else:
+ image = Image.open(os.path.abspath(img.name))
+ fn = os.path.splitext(img.orig_name)[0]
image_data.append(image)
- image_names.append(os.path.splitext(img.orig_name)[0])
+ image_names.append(fn)
elif extras_mode == 2:
assert not shared.cmd_opts.hide_ui_dir_config, '--hide-ui-dir-config option must be disabled'
assert input_dir, 'input directory not selected'
diff --git a/modules/processing.py b/modules/processing.py
index e544c2e1..a48fff99 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -3,6 +3,7 @@ import math
import os
import sys
import warnings
+import hashlib
import torch
import numpy as np
@@ -78,28 +79,34 @@ def apply_overlay(image, paste_loc, index, overlays):
def txt2img_image_conditioning(sd_model, x, width, height):
- if sd_model.model.conditioning_key not in {'hybrid', 'concat'}:
- # Dummy zero conditioning if we're not using inpainting model.
- # Still takes up a bit of memory, but no encoder call.
- # Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
- return x.new_zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)
+ if sd_model.model.conditioning_key in {'hybrid', 'concat'}: # Inpainting models
+
+ # The "masked-image" in this case will just be all zeros since the entire image is masked.
+ image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device)
+ image_conditioning = sd_model.get_first_stage_encoding(sd_model.encode_first_stage(image_conditioning))
- # The "masked-image" in this case will just be all zeros since the entire image is masked.
- image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device)
- image_conditioning = sd_model.get_first_stage_encoding(sd_model.encode_first_stage(image_conditioning))
+ # Add the fake full 1s mask to the first dimension.
+ image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
+ image_conditioning = image_conditioning.to(x.dtype)
- # Add the fake full 1s mask to the first dimension.
- image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
- image_conditioning = image_conditioning.to(x.dtype)
+ return image_conditioning
+
+ elif sd_model.model.conditioning_key == "crossattn-adm": # UnCLIP models
- return image_conditioning
+ return x.new_zeros(x.shape[0], 2*sd_model.noise_augmentor.time_embed.dim, dtype=x.dtype, device=x.device)
+
+ else:
+ # Dummy zero conditioning if we're not using inpainting or unclip models.
+ # Still takes up a bit of memory, but no encoder call.
+ # Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
+ return x.new_zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)
class StableDiffusionProcessing:
"""
The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
"""
- def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None):
+ def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None):
if sampler_index is not None:
print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
@@ -134,6 +141,7 @@ class StableDiffusionProcessing:
self.denoising_strength: float = denoising_strength
self.sampler_noise_scheduler_override = None
self.ddim_discretize = ddim_discretize or opts.ddim_discretize
+ self.s_min_uncond = s_min_uncond or opts.s_min_uncond
self.s_churn = s_churn or opts.s_churn
self.s_tmin = s_tmin or opts.s_tmin
self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option
@@ -156,6 +164,8 @@ class StableDiffusionProcessing:
self.all_seeds = None
self.all_subseeds = None
self.iteration = 0
+ self.is_hr_pass = False
+
@property
def sd_model(self):
@@ -186,10 +196,18 @@ class StableDiffusionProcessing:
return conditioning
def edit_image_conditioning(self, source_image):
- conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image))
+ conditioning_image = self.sd_model.encode_first_stage(source_image).mode()
return conditioning_image
+ def unclip_image_conditioning(self, source_image):
+ c_adm = self.sd_model.embedder(source_image)
+ if self.sd_model.noise_augmentor is not None:
+ noise_level = 0 # TODO: Allow other noise levels?
+ c_adm, noise_level_emb = self.sd_model.noise_augmentor(c_adm, noise_level=repeat(torch.tensor([noise_level]).to(c_adm.device), '1 -> b', b=c_adm.shape[0]))
+ c_adm = torch.cat((c_adm, noise_level_emb), 1)
+ return c_adm
+
def inpainting_image_conditioning(self, source_image, latent_image, image_mask=None):
self.is_using_inpainting_conditioning = True
@@ -241,6 +259,9 @@ class StableDiffusionProcessing:
if self.sampler.conditioning_key in {'hybrid', 'concat'}:
return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask)
+ if self.sampler.conditioning_key == "crossattn-adm":
+ return self.unclip_image_conditioning(source_image)
+
# Dummy zero conditioning if we're not using inpainting or depth model.
return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)
@@ -268,6 +289,7 @@ class Processed:
self.height = p.height
self.sampler_name = p.sampler_name
self.cfg_scale = p.cfg_scale
+ self.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
self.steps = p.steps
self.batch_size = p.batch_size
self.restore_faces = p.restore_faces
@@ -445,6 +467,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
"Steps": p.steps,
"Sampler": p.sampler_name,
"CFG scale": p.cfg_scale,
+ "Image CFG scale": getattr(p, 'image_cfg_scale', None),
"Seed": all_seeds[index],
"Face restoration": (opts.face_restoration_model if p.restore_faces else None),
"Size": f"{p.width}x{p.height}",
@@ -457,6 +480,9 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
"Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
"Clip skip": None if clip_skip <= 1 else clip_skip,
"ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta,
+ "Init image hash": getattr(p, 'init_img_hash', None),
+ "RNG": opts.randn_source if opts.randn_source != "GPU" else None,
+ "NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
}
generation_params.update(p.extra_generation_params)
@@ -541,8 +567,6 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
model_hijack.embedding_db.load_textual_inversion_embeddings()
- _, extra_network_data = extra_networks.parse_prompts(p.all_prompts[0:1])
-
if p.scripts is not None:
p.scripts.process(p)
@@ -580,16 +604,10 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if shared.opts.live_previews_enable and opts.show_progress_type == "Approx NN":
sd_vae_approx.model()
- if not p.disable_extra_networks:
- extra_networks.activate(p, extra_network_data)
-
- with open(os.path.join(paths.data_path, "params.txt"), "w", encoding="utf8") as file:
- processed = Processed(p, [], p.seed, "")
- file.write(processed.infotext(p, 0))
-
if state.job_count == -1:
state.job_count = p.n_iter
+ extra_network_data = None
for n in range(p.n_iter):
p.iteration = n
@@ -604,16 +622,38 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
+ if p.scripts is not None:
+ p.scripts.before_process_batch(p, batch_number=n, prompts=prompts, seeds=seeds, subseeds=subseeds)
+
if len(prompts) == 0:
break
- prompts, _ = extra_networks.parse_prompts(prompts)
+ prompts, extra_network_data = extra_networks.parse_prompts(prompts)
+
+ if not p.disable_extra_networks:
+ with devices.autocast():
+ extra_networks.activate(p, extra_network_data)
if p.scripts is not None:
p.scripts.process_batch(p, batch_number=n, prompts=prompts, seeds=seeds, subseeds=subseeds)
- uc = get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, p.steps, cached_uc)
- c = get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, p.steps, cached_c)
+ # params.txt should be saved after scripts.process_batch, since the
+ # infotext could be modified by that callback
+ # Example: a wildcard processed by process_batch sets an extra model
+ # strength, which is saved as "Model Strength: 1.0" in the infotext
+ if n == 0:
+ with open(os.path.join(paths.data_path, "params.txt"), "w", encoding="utf8") as file:
+ processed = Processed(p, [], p.seed, "")
+ file.write(processed.infotext(p, 0))
+
+ step_multiplier = 1
+ if not shared.opts.dont_fix_second_order_samplers_schedule:
+ try:
+ step_multiplier = 2 if sd_samplers.all_samplers_map.get(p.sampler_name).aliases[0] in ['k_dpmpp_2s_a', 'k_dpmpp_2s_a_ka', 'k_dpmpp_sde', 'k_dpmpp_sde_ka', 'k_dpm_2', 'k_dpm_2_a', 'k_heun'] else 1
+ except:
+ pass
+ uc = get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, p.steps * step_multiplier, cached_uc)
+ c = get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, p.steps * step_multiplier, cached_c)
if len(model_hijack.comments) > 0:
for comment in model_hijack.comments:
@@ -643,6 +683,8 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n)
for i, x_sample in enumerate(x_samples_ddim):
+ p.batch_index = i
+
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8)
@@ -679,6 +721,22 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
image.info["parameters"] = text
output_images.append(image)
+ if hasattr(p, 'mask_for_overlay') and p.mask_for_overlay and any([opts.save_mask, opts.save_mask_composite, opts.return_mask, opts.return_mask_composite]):
+ image_mask = p.mask_for_overlay.convert('RGB')
+ image_mask_composite = Image.composite(image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, p.mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA')
+
+ if opts.save_mask:
+ images.save_image(image_mask, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask")
+
+ if opts.save_mask_composite:
+ images.save_image(image_mask_composite, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask-composite")
+
+ if opts.return_mask:
+ output_images.append(image_mask)
+
+ if opts.return_mask_composite:
+ output_images.append(image_mask_composite)
+
del x_samples_ddim
devices.torch_gc()
@@ -703,7 +761,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if opts.grid_save:
images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
- if not p.disable_extra_networks:
+ if not p.disable_extra_networks and extra_network_data:
extra_networks.deactivate(p, extra_network_data)
devices.torch_gc()
@@ -828,6 +886,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
if not self.enable_hr:
return samples
+ self.is_hr_pass = True
+
target_width = self.hr_upscale_to_x
target_height = self.hr_upscale_to_y
@@ -882,7 +942,9 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
shared.state.nextjob()
- img2img_sampler_name = self.sampler_name if self.sampler_name != 'PLMS' else 'DDIM' # PLMS does not support img2img so we just silently switch ot DDIM
+ img2img_sampler_name = self.sampler_name
+ if self.sampler_name in ['PLMS', 'UniPC']: # PLMS/UniPC do not support img2img so we just silently switch to DDIM
+ img2img_sampler_name = 'DDIM'
self.sampler = sd_samplers.create_sampler(img2img_sampler_name, self.sd_model)
samples = samples[:, :, self.truncate_y//2:samples.shape[2]-(self.truncate_y+1)//2, self.truncate_x//2:samples.shape[3]-(self.truncate_x+1)//2]
@@ -895,18 +957,21 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)
+ self.is_hr_pass = False
+
return samples
class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
sampler = None
- def __init__(self, init_images: list = None, resize_mode: int = 0, denoising_strength: float = 0.75, mask: Any = None, mask_blur: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: float = None, **kwargs):
+ def __init__(self, init_images: list = None, resize_mode: int = 0, denoising_strength: float = 0.75, image_cfg_scale: float = None, mask: Any = None, mask_blur: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: float = None, **kwargs):
super().__init__(**kwargs)
self.init_images = init_images
self.resize_mode: int = resize_mode
self.denoising_strength: float = denoising_strength
+ self.image_cfg_scale: float = image_cfg_scale if shared.sd_model.cond_stage_key == "edit" else None
self.init_latent = None
self.image_mask = mask
self.latent_mask = None
@@ -961,6 +1026,12 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.color_corrections = []
imgs = []
for img in self.init_images:
+
+ # Save init image
+ if opts.save_init_img:
+ self.init_img_hash = hashlib.md5(img.tobytes()).hexdigest()
+ images.save_image(img, path=opts.outdir_init_images, basename=None, forced_filename=self.init_img_hash, save_to_dirs=False)
+
image = images.flatten(img, opts.img2img_background_color)
if crop_region is None and self.resize_mode != 3:
diff --git a/modules/realesrgan_model.py b/modules/realesrgan_model.py
index aad4a629..d6079433 100644
--- a/modules/realesrgan_model.py
+++ b/modules/realesrgan_model.py
@@ -9,7 +9,7 @@ from realesrgan import RealESRGANer
from modules.upscaler import Upscaler, UpscalerData
from modules.shared import cmd_opts, opts
-
+from modules import modelloader
class UpscalerRealESRGAN(Upscaler):
def __init__(self, path):
@@ -23,7 +23,15 @@ class UpscalerRealESRGAN(Upscaler):
self.enable = True
self.scalers = []
scalers = self.load_models(path)
+
+ local_model_paths = self.find_models(ext_filter=[".pth"])
for scaler in scalers:
+ if scaler.local_data_path.startswith("http"):
+ filename = modelloader.friendly_name(scaler.local_data_path)
+ local = next(iter([local_model for local_model in local_model_paths if local_model.endswith(filename + '.pth')]), None)
+ if local:
+ scaler.local_data_path = local
+
if scaler.name in opts.realesrgan_enabled_models:
self.scalers.append(scaler)
@@ -64,7 +72,9 @@ class UpscalerRealESRGAN(Upscaler):
print(f"Unable to find model info: {path}")
return None
- info.local_data_path = load_file_from_url(url=info.data_path, model_dir=self.model_path, progress=True)
+ if info.local_data_path.startswith("http"):
+ info.local_data_path = load_file_from_url(url=info.data_path, model_dir=self.model_path, progress=True)
+
return info
except Exception as e:
print(f"Error making Real-ESRGAN models list: {e}", file=sys.stderr)
diff --git a/modules/safe.py b/modules/safe.py
index 82d44be3..dadf319c 100644
--- a/modules/safe.py
+++ b/modules/safe.py
@@ -1,6 +1,5 @@
# this code is adapted from the script contributed by anon from /h/
-import io
import pickle
import collections
import sys
@@ -12,11 +11,9 @@ import _codecs
import zipfile
import re
-
# PyTorch 1.13 and later have _TypedStorage renamed to TypedStorage
TypedStorage = torch.storage.TypedStorage if hasattr(torch.storage, 'TypedStorage') else torch.storage._TypedStorage
-
def encode(*args):
out = _codecs.encode(*args)
return out
@@ -27,7 +24,7 @@ class RestrictedUnpickler(pickle.Unpickler):
def persistent_load(self, saved_id):
assert saved_id[0] == 'storage'
- return TypedStorage()
+ return TypedStorage(_internal=True)
def find_class(self, module, name):
if self.extra_handler is not None:
diff --git a/modules/script_callbacks.py b/modules/script_callbacks.py
index 8e80dd8d..cede1cb0 100644
--- a/modules/script_callbacks.py
+++ b/modules/script_callbacks.py
@@ -29,7 +29,7 @@ class ImageSaveParams:
class CFGDenoiserParams:
- def __init__(self, x, image_cond, sigma, sampling_step, total_sampling_steps):
+ def __init__(self, x, image_cond, sigma, sampling_step, total_sampling_steps, text_cond, text_uncond):
self.x = x
"""Latent image representation in the process of being denoised"""
@@ -44,6 +44,24 @@ class CFGDenoiserParams:
self.total_sampling_steps = total_sampling_steps
"""Total number of sampling steps planned"""
+
+ self.text_cond = text_cond
+ """ Encoder hidden states of text conditioning from prompt"""
+
+ self.text_uncond = text_uncond
+ """ Encoder hidden states of text conditioning from negative prompt"""
+
+
+class CFGDenoisedParams:
+ def __init__(self, x, sampling_step, total_sampling_steps):
+ self.x = x
+ """Latent image representation in the process of being denoised"""
+
+ self.sampling_step = sampling_step
+ """Current Sampling step number"""
+
+ self.total_sampling_steps = total_sampling_steps
+ """Total number of sampling steps planned"""
class UiTrainTabParams:
@@ -68,6 +86,7 @@ callback_map = dict(
callbacks_before_image_saved=[],
callbacks_image_saved=[],
callbacks_cfg_denoiser=[],
+ callbacks_cfg_denoised=[],
callbacks_before_component=[],
callbacks_after_component=[],
callbacks_image_grid=[],
@@ -165,6 +184,14 @@ def cfg_denoiser_callback(params: CFGDenoiserParams):
report_exception(c, 'cfg_denoiser_callback')
+def cfg_denoised_callback(params: CFGDenoisedParams):
+ for c in callback_map['callbacks_cfg_denoised']:
+ try:
+ c.callback(params)
+ except Exception:
+ report_exception(c, 'cfg_denoised_callback')
+
+
def before_component_callback(component, **kwargs):
for c in callback_map['callbacks_before_component']:
try:
@@ -306,6 +333,14 @@ def on_cfg_denoiser(callback):
add_callback(callback_map['callbacks_cfg_denoiser'], callback)
+def on_cfg_denoised(callback):
+ """register a function to be called in the kdiffussion cfg_denoiser method after building the inner model inputs.
+ The callback is called with one argument:
+ - params: CFGDenoisedParams - parameters to be passed to the inner model and sampling state details.
+ """
+ add_callback(callback_map['callbacks_cfg_denoised'], callback)
+
+
def on_before_component(callback):
"""register a function to be called before a component is created.
The callback is called with arguments:
diff --git a/modules/scripts.py b/modules/scripts.py
index 24056a12..4d0bbd66 100644
--- a/modules/scripts.py
+++ b/modules/scripts.py
@@ -33,6 +33,11 @@ class Script:
parsing infotext to set the value for the component; see ui.py's txt2img_paste_fields for an example
"""
+ paste_field_names = None
+ """if set in ui(), this is a list of names of infotext fields; the fields will be sent through the
+ various "Send to <X>" buttons when clicked
+ """
+
def title(self):
"""this function should return the title of the script. This is what will be displayed in the dropdown menu."""
@@ -80,6 +85,20 @@ class Script:
pass
+ def before_process_batch(self, p, *args, **kwargs):
+ """
+ Called before extra networks are parsed from the prompt, so you can add
+ new extra network keywords to the prompt with this callback.
+
+ **kwargs will have those items:
+ - batch_number - index of current batch, from 0 to number of batches-1
+ - prompts - list of prompts for current batch; you can change contents of this list but changing the number of entries will likely break things
+ - seeds - list of seeds for current batch
+ - subseeds - list of subseeds for current batch
+ """
+
+ pass
+
def process_batch(self, p, *args, **kwargs):
"""
Same as process(), but called for every batch.
@@ -220,7 +239,15 @@ def load_scripts():
elif issubclass(script_class, scripts_postprocessing.ScriptPostprocessing):
postprocessing_scripts_data.append(ScriptClassData(script_class, scriptfile.path, scriptfile.basedir, module))
- for scriptfile in sorted(scripts_list):
+ def orderby(basedir):
+ # 1st webui, 2nd extensions-builtin, 3rd extensions
+ priority = {os.path.join(paths.script_path, "extensions-builtin"):1, paths.script_path:0}
+ for key in priority:
+ if basedir.startswith(key):
+ return priority[key]
+ return 9999
+
+ for scriptfile in sorted(scripts_list, key=lambda x: [orderby(x.basedir), x]):
try:
if scriptfile.basedir != paths.script_path:
sys.path = [scriptfile.basedir] + sys.path
@@ -256,6 +283,7 @@ class ScriptRunner:
self.alwayson_scripts = []
self.titles = []
self.infotext_fields = []
+ self.paste_field_names = []
def initialize_scripts(self, is_img2img):
from modules import scripts_auto_postprocessing
@@ -304,6 +332,9 @@ class ScriptRunner:
if script.infotext_fields is not None:
self.infotext_fields += script.infotext_fields
+ if script.paste_field_names is not None:
+ self.paste_field_names += script.paste_field_names
+
inputs += controls
inputs_alwayson += [script.alwayson for _ in controls]
script.args_to = len(inputs)
@@ -388,6 +419,15 @@ class ScriptRunner:
print(f"Error running process: {script.filename}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
+ def before_process_batch(self, p, **kwargs):
+ for script in self.alwayson_scripts:
+ try:
+ script_args = p.script_args[script.args_from:script.args_to]
+ script.before_process_batch(p, *script_args, **kwargs)
+ except Exception:
+ print(f"Error running before_process_batch: {script.filename}", file=sys.stderr)
+ print(traceback.format_exc(), file=sys.stderr)
+
def process_batch(self, p, **kwargs):
for script in self.alwayson_scripts:
try:
@@ -481,6 +521,18 @@ def reload_scripts():
scripts_postproc = scripts_postprocessing.ScriptPostprocessingRunner()
+def add_classes_to_gradio_component(comp):
+ """
+ this adds gradio-* to the component for css styling (ie gradio-button to gr.Button), as well as some others
+ """
+
+ comp.elem_classes = ["gradio-" + comp.get_block_name(), *(comp.elem_classes or [])]
+
+ if getattr(comp, 'multiselect', False):
+ comp.elem_classes.append('multiselect')
+
+
+
def IOComponent_init(self, *args, **kwargs):
if scripts_current is not None:
scripts_current.before_component(self, **kwargs)
@@ -489,6 +541,8 @@ def IOComponent_init(self, *args, **kwargs):
res = original_IOComponent_init(self, *args, **kwargs)
+ add_classes_to_gradio_component(self)
+
script_callbacks.after_component_callback(self, **kwargs)
if scripts_current is not None:
@@ -499,3 +553,15 @@ def IOComponent_init(self, *args, **kwargs):
original_IOComponent_init = gr.components.IOComponent.__init__
gr.components.IOComponent.__init__ = IOComponent_init
+
+
+def BlockContext_init(self, *args, **kwargs):
+ res = original_BlockContext_init(self, *args, **kwargs)
+
+ add_classes_to_gradio_component(self)
+
+ return res
+
+
+original_BlockContext_init = gr.blocks.BlockContext.__init__
+gr.blocks.BlockContext.__init__ = BlockContext_init
diff --git a/modules/scripts_postprocessing.py b/modules/scripts_postprocessing.py
index ce0ebb61..b11568c0 100644
--- a/modules/scripts_postprocessing.py
+++ b/modules/scripts_postprocessing.py
@@ -109,7 +109,7 @@ class ScriptPostprocessingRunner:
inputs = []
for script in self.scripts_in_preferred_order():
- with gr.Box() as group:
+ with gr.Row() as group:
self.create_script_ui(script, inputs)
script.group = group
diff --git a/modules/sd_disable_initialization.py b/modules/sd_disable_initialization.py
index e90aa9fe..c4a09d15 100644
--- a/modules/sd_disable_initialization.py
+++ b/modules/sd_disable_initialization.py
@@ -20,8 +20,9 @@ class DisableInitialization:
```
"""
- def __init__(self):
+ def __init__(self, disable_clip=True):
self.replaced = []
+ self.disable_clip = disable_clip
def replace(self, obj, field, func):
original = getattr(obj, field, None)
@@ -75,12 +76,14 @@ class DisableInitialization:
self.replace(torch.nn.init, 'kaiming_uniform_', do_nothing)
self.replace(torch.nn.init, '_no_grad_normal_', do_nothing)
self.replace(torch.nn.init, '_no_grad_uniform_', do_nothing)
- self.create_model_and_transforms = self.replace(open_clip, 'create_model_and_transforms', create_model_and_transforms_without_pretrained)
- self.CLIPTextModel_from_pretrained = self.replace(ldm.modules.encoders.modules.CLIPTextModel, 'from_pretrained', CLIPTextModel_from_pretrained)
- self.transformers_modeling_utils_load_pretrained_model = self.replace(transformers.modeling_utils.PreTrainedModel, '_load_pretrained_model', transformers_modeling_utils_load_pretrained_model)
- self.transformers_tokenization_utils_base_cached_file = self.replace(transformers.tokenization_utils_base, 'cached_file', transformers_tokenization_utils_base_cached_file)
- self.transformers_configuration_utils_cached_file = self.replace(transformers.configuration_utils, 'cached_file', transformers_configuration_utils_cached_file)
- self.transformers_utils_hub_get_from_cache = self.replace(transformers.utils.hub, 'get_from_cache', transformers_utils_hub_get_from_cache)
+
+ if self.disable_clip:
+ self.create_model_and_transforms = self.replace(open_clip, 'create_model_and_transforms', create_model_and_transforms_without_pretrained)
+ self.CLIPTextModel_from_pretrained = self.replace(ldm.modules.encoders.modules.CLIPTextModel, 'from_pretrained', CLIPTextModel_from_pretrained)
+ self.transformers_modeling_utils_load_pretrained_model = self.replace(transformers.modeling_utils.PreTrainedModel, '_load_pretrained_model', transformers_modeling_utils_load_pretrained_model)
+ self.transformers_tokenization_utils_base_cached_file = self.replace(transformers.tokenization_utils_base, 'cached_file', transformers_tokenization_utils_base_cached_file)
+ self.transformers_configuration_utils_cached_file = self.replace(transformers.configuration_utils, 'cached_file', transformers_configuration_utils_cached_file)
+ self.transformers_utils_hub_get_from_cache = self.replace(transformers.utils.hub, 'get_from_cache', transformers_utils_hub_get_from_cache)
def __exit__(self, exc_type, exc_val, exc_tb):
for obj, field, original in self.replaced:
diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py
index 8fdc5990..f4bb0266 100644
--- a/modules/sd_hijack.py
+++ b/modules/sd_hijack.py
@@ -1,5 +1,6 @@
import torch
from torch.nn.functional import silu
+from types import MethodType
import modules.textual_inversion.textual_inversion
from modules import devices, sd_hijack_optimizations, shared, sd_hijack_checkpoint
@@ -36,11 +37,23 @@ def apply_optimizations():
optimization_method = None
+ can_use_sdp = hasattr(torch.nn.functional, "scaled_dot_product_attention") and callable(getattr(torch.nn.functional, "scaled_dot_product_attention")) # not everyone has torch 2.x to use sdp
+
if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0)):
print("Applying xformers cross attention optimization.")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.xformers_attention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.xformers_attnblock_forward
optimization_method = 'xformers'
+ elif cmd_opts.opt_sdp_no_mem_attention and can_use_sdp:
+ print("Applying scaled dot product cross attention optimization (without memory efficient attention).")
+ ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.scaled_dot_product_no_mem_attention_forward
+ ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.sdp_no_mem_attnblock_forward
+ optimization_method = 'sdp-no-mem'
+ elif cmd_opts.opt_sdp_attention and can_use_sdp:
+ print("Applying scaled dot product cross attention optimization.")
+ ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.scaled_dot_product_attention_forward
+ ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.sdp_attnblock_forward
+ optimization_method = 'sdp'
elif cmd_opts.opt_sub_quad_attention:
print("Applying sub-quadratic cross attention optimization.")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.sub_quad_attention_forward
@@ -76,6 +89,54 @@ def fix_checkpoint():
pass
+def weighted_loss(sd_model, pred, target, mean=True):
+ #Calculate the weight normally, but ignore the mean
+ loss = sd_model._old_get_loss(pred, target, mean=False)
+
+ #Check if we have weights available
+ weight = getattr(sd_model, '_custom_loss_weight', None)
+ if weight is not None:
+ loss *= weight
+
+ #Return the loss, as mean if specified
+ return loss.mean() if mean else loss
+
+def weighted_forward(sd_model, x, c, w, *args, **kwargs):
+ try:
+ #Temporarily append weights to a place accessible during loss calc
+ sd_model._custom_loss_weight = w
+
+ #Replace 'get_loss' with a weight-aware one. Otherwise we need to reimplement 'forward' completely
+ #Keep 'get_loss', but don't overwrite the previous old_get_loss if it's already set
+ if not hasattr(sd_model, '_old_get_loss'):
+ sd_model._old_get_loss = sd_model.get_loss
+ sd_model.get_loss = MethodType(weighted_loss, sd_model)
+
+ #Run the standard forward function, but with the patched 'get_loss'
+ return sd_model.forward(x, c, *args, **kwargs)
+ finally:
+ try:
+ #Delete temporary weights if appended
+ del sd_model._custom_loss_weight
+ except AttributeError as e:
+ pass
+
+ #If we have an old loss function, reset the loss function to the original one
+ if hasattr(sd_model, '_old_get_loss'):
+ sd_model.get_loss = sd_model._old_get_loss
+ del sd_model._old_get_loss
+
+def apply_weighted_forward(sd_model):
+ #Add new function 'weighted_forward' that can be called to calc weighted loss
+ sd_model.weighted_forward = MethodType(weighted_forward, sd_model)
+
+def undo_weighted_forward(sd_model):
+ try:
+ del sd_model.weighted_forward
+ except AttributeError as e:
+ pass
+
+
class StableDiffusionModelHijack:
fixes = None
comments = []
@@ -104,6 +165,10 @@ class StableDiffusionModelHijack:
m.cond_stage_model.model.token_embedding = EmbeddingsWithFixes(m.cond_stage_model.model.token_embedding, self)
m.cond_stage_model = sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords(m.cond_stage_model, self)
+ apply_weighted_forward(m)
+ if m.cond_stage_key == "edit":
+ sd_hijack_unet.hijack_ddpm_edit()
+
self.optimization_method = apply_optimizations()
self.clip = m.cond_stage_model
@@ -132,6 +197,7 @@ class StableDiffusionModelHijack:
m.cond_stage_model = m.cond_stage_model.wrapped
undo_optimizations()
+ undo_weighted_forward(m)
self.apply_circular(False)
self.layers = None
diff --git a/modules/sd_hijack_inpainting.py b/modules/sd_hijack_inpainting.py
index 478cd499..55a2ce4d 100644
--- a/modules/sd_hijack_inpainting.py
+++ b/modules/sd_hijack_inpainting.py
@@ -11,6 +11,7 @@ import ldm.models.diffusion.plms
from ldm.models.diffusion.ddpm import LatentDiffusion
from ldm.models.diffusion.plms import PLMSSampler
from ldm.models.diffusion.ddim import DDIMSampler, noise_like
+from ldm.models.diffusion.sampling_util import norm_thresholding
@torch.no_grad()
diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py
index c02d954c..372555ff 100644
--- a/modules/sd_hijack_optimizations.py
+++ b/modules/sd_hijack_optimizations.py
@@ -337,7 +337,7 @@ def xformers_attention_forward(self, x, context=None, mask=None):
dtype = q.dtype
if shared.opts.upcast_attn:
- q, k = q.float(), k.float()
+ q, k, v = q.float(), k.float(), v.float()
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=get_xformers_flash_attention_op(q, k, v))
@@ -346,6 +346,52 @@ def xformers_attention_forward(self, x, context=None, mask=None):
out = rearrange(out, 'b n h d -> b n (h d)', h=h)
return self.to_out(out)
+# Based on Diffusers usage of scaled dot product attention from https://github.com/huggingface/diffusers/blob/c7da8fd23359a22d0df2741688b5b4f33c26df21/src/diffusers/models/cross_attention.py
+# The scaled_dot_product_attention_forward function contains parts of code under Apache-2.0 license listed under Scaled Dot Product Attention in the Licenses section of the web UI interface
+def scaled_dot_product_attention_forward(self, x, context=None, mask=None):
+ batch_size, sequence_length, inner_dim = x.shape
+
+ if mask is not None:
+ mask = self.prepare_attention_mask(mask, sequence_length, batch_size)
+ mask = mask.view(batch_size, self.heads, -1, mask.shape[-1])
+
+ h = self.heads
+ q_in = self.to_q(x)
+ context = default(context, x)
+
+ context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context)
+ k_in = self.to_k(context_k)
+ v_in = self.to_v(context_v)
+
+ head_dim = inner_dim // h
+ q = q_in.view(batch_size, -1, h, head_dim).transpose(1, 2)
+ k = k_in.view(batch_size, -1, h, head_dim).transpose(1, 2)
+ v = v_in.view(batch_size, -1, h, head_dim).transpose(1, 2)
+
+ del q_in, k_in, v_in
+
+ dtype = q.dtype
+ if shared.opts.upcast_attn:
+ q, k, v = q.float(), k.float(), v.float()
+
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
+ hidden_states = torch.nn.functional.scaled_dot_product_attention(
+ q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False
+ )
+
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, h * head_dim)
+ hidden_states = hidden_states.to(dtype)
+
+ # linear proj
+ hidden_states = self.to_out[0](hidden_states)
+ # dropout
+ hidden_states = self.to_out[1](hidden_states)
+ return hidden_states
+
+def scaled_dot_product_no_mem_attention_forward(self, x, context=None, mask=None):
+ with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=False):
+ return scaled_dot_product_attention_forward(self, x, context, mask)
+
def cross_attention_attnblock_forward(self, x):
h_ = x
h_ = self.norm(h_)
@@ -427,6 +473,30 @@ def xformers_attnblock_forward(self, x):
except NotImplementedError:
return cross_attention_attnblock_forward(self, x)
+def sdp_attnblock_forward(self, x):
+ h_ = x
+ h_ = self.norm(h_)
+ q = self.q(h_)
+ k = self.k(h_)
+ v = self.v(h_)
+ b, c, h, w = q.shape
+ q, k, v = map(lambda t: rearrange(t, 'b c h w -> b (h w) c'), (q, k, v))
+ dtype = q.dtype
+ if shared.opts.upcast_attn:
+ q, k = q.float(), k.float()
+ q = q.contiguous()
+ k = k.contiguous()
+ v = v.contiguous()
+ out = torch.nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=0.0, is_causal=False)
+ out = out.to(dtype)
+ out = rearrange(out, 'b (h w) c -> b c h w', h=h)
+ out = self.proj_out(out)
+ return x + out
+
+def sdp_no_mem_attnblock_forward(self, x):
+ with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=False):
+ return sdp_attnblock_forward(self, x)
+
def sub_quad_attnblock_forward(self, x):
h_ = x
h_ = self.norm(h_)
diff --git a/modules/sd_hijack_unet.py b/modules/sd_hijack_unet.py
index 45cf2b18..15858263 100644
--- a/modules/sd_hijack_unet.py
+++ b/modules/sd_hijack_unet.py
@@ -44,6 +44,7 @@ def apply_model(orig_func, self, x_noisy, t, cond, **kwargs):
with devices.autocast():
return orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, **kwargs).float()
+
class GELUHijack(torch.nn.GELU, torch.nn.Module):
def __init__(self, *args, **kwargs):
torch.nn.GELU.__init__(self, *args, **kwargs)
@@ -53,10 +54,20 @@ class GELUHijack(torch.nn.GELU, torch.nn.Module):
else:
return torch.nn.GELU.forward(self, x)
+
+ddpm_edit_hijack = None
+def hijack_ddpm_edit():
+ global ddpm_edit_hijack
+ if not ddpm_edit_hijack:
+ CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond)
+ CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond)
+ ddpm_edit_hijack = CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.apply_model', apply_model, unet_needs_upcast)
+
+
unet_needs_upcast = lambda *args, **kwargs: devices.unet_needs_upcast
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.apply_model', apply_model, unet_needs_upcast)
CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, timesteps, *args, **kwargs: orig_func(timesteps, *args, **kwargs).to(torch.float32 if timesteps.dtype == torch.int64 else devices.dtype_unet), unet_needs_upcast)
-if version.parse(torch.__version__) <= version.parse("1.13.1"):
+if version.parse(torch.__version__) <= version.parse("1.13.2") or torch.cuda.is_available():
CondFunc('ldm.modules.diffusionmodules.util.GroupNorm32.forward', lambda orig_func, self, *args, **kwargs: orig_func(self.float(), *args, **kwargs), unet_needs_upcast)
CondFunc('ldm.modules.attention.GEGLU.forward', lambda orig_func, self, x: orig_func(self.float(), x.float()).to(devices.dtype_unet), unet_needs_upcast)
CondFunc('open_clip.transformer.ResidualAttentionBlock.__init__', lambda orig_func, *args, **kwargs: kwargs.update({'act_layer': GELUHijack}) and False or orig_func(*args, **kwargs), lambda _, *args, **kwargs: kwargs.get('act_layer') is None or kwargs['act_layer'] == torch.nn.GELU)
diff --git a/modules/sd_models.py b/modules/sd_models.py
index 300387a9..4f7613a1 100644
--- a/modules/sd_models.py
+++ b/modules/sd_models.py
@@ -52,6 +52,15 @@ class CheckpointInfo:
self.ids = [self.hash, self.model_name, self.title, name, f'{name} [{self.hash}]'] + ([self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]'] if self.shorthash else [])
+ self.metadata = {}
+
+ _, ext = os.path.splitext(self.filename)
+ if ext.lower() == ".safetensors":
+ try:
+ self.metadata = read_metadata_from_safetensors(filename)
+ except Exception as e:
+ errors.display(e, f"reading checkpoint metadata: {filename}")
+
def register(self):
checkpoints_list[self.title] = self
for id in self.ids:
@@ -59,13 +68,17 @@ class CheckpointInfo:
def calculate_shorthash(self):
self.sha256 = hashes.sha256(self.filename, "checkpoint/" + self.name)
+ if self.sha256 is None:
+ return
+
self.shorthash = self.sha256[0:10]
if self.shorthash not in self.ids:
- self.ids += [self.shorthash, self.sha256]
- self.register()
+ self.ids += [self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]']
+ checkpoints_list.pop(self.title)
self.title = f'{self.name} [{self.shorthash}]'
+ self.register()
return self.shorthash
@@ -101,9 +114,15 @@ def checkpoint_tiles():
def list_models():
checkpoints_list.clear()
checkpoint_alisases.clear()
- model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"], ext_blacklist=[".vae.safetensors"])
cmd_ckpt = shared.cmd_opts.ckpt
+ if shared.cmd_opts.no_download_sd_model or cmd_ckpt != shared.sd_model_file or os.path.exists(cmd_ckpt):
+ model_url = None
+ else:
+ model_url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors"
+
+ model_list = modelloader.load_models(model_path=model_path, model_url=model_url, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"], download_name="v1-5-pruned-emaonly.safetensors", ext_blacklist=[".vae.ckpt", ".vae.safetensors"])
+
if os.path.exists(cmd_ckpt):
checkpoint_info = CheckpointInfo(cmd_ckpt)
checkpoint_info.register()
@@ -112,7 +131,7 @@ def list_models():
elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file:
print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr)
- for filename in model_list:
+ for filename in sorted(model_list, key=str.lower):
checkpoint_info = CheckpointInfo(filename)
checkpoint_info.register()
@@ -158,7 +177,7 @@ def select_checkpoint():
print(f" - directory {model_path}", file=sys.stderr)
if shared.cmd_opts.ckpt_dir is not None:
print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr)
- print("Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr)
+ print("Can't run without a checkpoint. Find and place a .ckpt or .safetensors file into any of those locations. The program will exit.", file=sys.stderr)
exit(1)
checkpoint_info = next(iter(checkpoints_list.values()))
@@ -168,7 +187,7 @@ def select_checkpoint():
return checkpoint_info
-chckpoint_dict_replacements = {
+checkpoint_dict_replacements = {
'cond_stage_model.transformer.embeddings.': 'cond_stage_model.transformer.text_model.embeddings.',
'cond_stage_model.transformer.encoder.': 'cond_stage_model.transformer.text_model.encoder.',
'cond_stage_model.transformer.final_layer_norm.': 'cond_stage_model.transformer.text_model.final_layer_norm.',
@@ -176,7 +195,7 @@ chckpoint_dict_replacements = {
def transform_checkpoint_dict_key(k):
- for text, replacement in chckpoint_dict_replacements.items():
+ for text, replacement in checkpoint_dict_replacements.items():
if k.startswith(text):
k = replacement + k[len(text):]
@@ -200,6 +219,30 @@ def get_state_dict_from_checkpoint(pl_sd):
return pl_sd
+def read_metadata_from_safetensors(filename):
+ import json
+
+ with open(filename, mode="rb") as file:
+ metadata_len = file.read(8)
+ metadata_len = int.from_bytes(metadata_len, "little")
+ json_start = file.read(2)
+
+ assert metadata_len > 2 and json_start in (b'{"', b"{'"), f"{filename} is not a safetensors file"
+ json_data = json_start + file.read(metadata_len-2)
+ json_obj = json.loads(json_data)
+
+ res = {}
+ for k, v in json_obj.get("__metadata__", {}).items():
+ res[k] = v
+ if isinstance(v, str) and v[0:1] == '{':
+ try:
+ res[k] = json.loads(v)
+ except Exception as e:
+ pass
+
+ return res
+
+
def read_state_dict(checkpoint_file, print_global_state=False, map_location=None):
_, extension = os.path.splitext(checkpoint_file)
if extension.lower() == ".safetensors":
@@ -349,6 +392,17 @@ def repair_config(sd_config):
elif shared.cmd_opts.upcast_sampling:
sd_config.model.params.unet_config.params.use_fp16 = True
+ if getattr(sd_config.model.params.first_stage_config.params.ddconfig, "attn_type", None) == "vanilla-xformers" and not shared.xformers_available:
+ sd_config.model.params.first_stage_config.params.ddconfig.attn_type = "vanilla"
+
+ # For UnCLIP-L, override the hardcoded karlo directory
+ if hasattr(sd_config.model.params, "noise_aug_config") and hasattr(sd_config.model.params.noise_aug_config.params, "clip_stats_path"):
+ karlo_path = os.path.join(paths.models_path, 'karlo')
+ sd_config.model.params.noise_aug_config.params.clip_stats_path = sd_config.model.params.noise_aug_config.params.clip_stats_path.replace("checkpoints/karlo_models", karlo_path)
+
+
+sd1_clip_weight = 'cond_stage_model.transformer.text_model.embeddings.token_embedding.weight'
+sd2_clip_weight = 'cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight'
def load_model(checkpoint_info=None, already_loaded_state_dict=None, time_taken_to_load_state_dict=None):
from modules import lowvram, sd_hijack
@@ -370,6 +424,7 @@ def load_model(checkpoint_info=None, already_loaded_state_dict=None, time_taken_
state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info)
+ clip_is_included_into_sd = sd1_clip_weight in state_dict or sd2_clip_weight in state_dict
timer.record("find config")
@@ -382,7 +437,7 @@ def load_model(checkpoint_info=None, already_loaded_state_dict=None, time_taken_
sd_model = None
try:
- with sd_disable_initialization.DisableInitialization():
+ with sd_disable_initialization.DisableInitialization(disable_clip=clip_is_included_into_sd):
sd_model = instantiate_from_config(sd_config.model)
except Exception as e:
pass
@@ -456,7 +511,7 @@ def reload_model_weights(sd_model=None, info=None):
if sd_model is None or checkpoint_config != sd_model.used_config:
del sd_model
checkpoints_loaded.clear()
- load_model(checkpoint_info, already_loaded_state_dict=state_dict, time_taken_to_load_state_dict=timer.records["load weights from disk"])
+ load_model(checkpoint_info, already_loaded_state_dict=state_dict)
return shared.sd_model
try:
@@ -479,3 +534,23 @@ def reload_model_weights(sd_model=None, info=None):
print(f"Weights loaded in {timer.summary()}.")
return sd_model
+
+def unload_model_weights(sd_model=None, info=None):
+ from modules import lowvram, devices, sd_hijack
+ timer = Timer()
+
+ if shared.sd_model:
+
+ # shared.sd_model.cond_stage_model.to(devices.cpu)
+ # shared.sd_model.first_stage_model.to(devices.cpu)
+ shared.sd_model.to(devices.cpu)
+ sd_hijack.model_hijack.undo_hijack(shared.sd_model)
+ shared.sd_model = None
+ sd_model = None
+ gc.collect()
+ devices.torch_gc()
+ torch.cuda.empty_cache()
+
+ print(f"Unloaded weights {timer.summary()}.")
+
+ return sd_model
diff --git a/modules/sd_models_config.py b/modules/sd_models_config.py
index 91c21700..9398f528 100644
--- a/modules/sd_models_config.py
+++ b/modules/sd_models_config.py
@@ -14,6 +14,8 @@ config_sd2 = os.path.join(sd_repo_configs_path, "v2-inference.yaml")
config_sd2v = os.path.join(sd_repo_configs_path, "v2-inference-v.yaml")
config_sd2_inpainting = os.path.join(sd_repo_configs_path, "v2-inpainting-inference.yaml")
config_depth_model = os.path.join(sd_repo_configs_path, "v2-midas-inference.yaml")
+config_unclip = os.path.join(sd_repo_configs_path, "v2-1-stable-unclip-l-inference.yaml")
+config_unopenclip = os.path.join(sd_repo_configs_path, "v2-1-stable-unclip-h-inference.yaml")
config_inpainting = os.path.join(sd_configs_path, "v1-inpainting-inference.yaml")
config_instruct_pix2pix = os.path.join(sd_configs_path, "instruct-pix2pix.yaml")
config_alt_diffusion = os.path.join(sd_configs_path, "alt-diffusion-inference.yaml")
@@ -65,9 +67,14 @@ def is_using_v_parameterization_for_sd2(state_dict):
def guess_model_config_from_state_dict(sd, filename):
sd2_cond_proj_weight = sd.get('cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight', None)
diffusion_model_input = sd.get('model.diffusion_model.input_blocks.0.0.weight', None)
+ sd2_variations_weight = sd.get('embedder.model.ln_final.weight', None)
if sd.get('depth_model.model.pretrained.act_postprocess3.0.project.0.bias', None) is not None:
return config_depth_model
+ elif sd2_variations_weight is not None and sd2_variations_weight.shape[0] == 768:
+ return config_unclip
+ elif sd2_variations_weight is not None and sd2_variations_weight.shape[0] == 1024:
+ return config_unopenclip
if sd2_cond_proj_weight is not None and sd2_cond_proj_weight.shape[1] == 1024:
if diffusion_model_input.shape[1] == 9:
diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py
index 28c2136f..ff361f22 100644
--- a/modules/sd_samplers.py
+++ b/modules/sd_samplers.py
@@ -32,7 +32,7 @@ def set_samplers():
global samplers, samplers_for_img2img
hidden = set(shared.opts.hide_samplers)
- hidden_img2img = set(shared.opts.hide_samplers + ['PLMS'])
+ hidden_img2img = set(shared.opts.hide_samplers + ['PLMS', 'UniPC'])
samplers = [x for x in all_samplers if x.name not in hidden]
samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img]
diff --git a/modules/sd_samplers_common.py b/modules/sd_samplers_common.py
index 3c03d442..bc074238 100644
--- a/modules/sd_samplers_common.py
+++ b/modules/sd_samplers_common.py
@@ -2,7 +2,6 @@ from collections import namedtuple
import numpy as np
import torch
from PIL import Image
-import torchsde._brownian.brownian_interval
from modules import devices, processing, images, sd_vae_approx
from modules.shared import opts, state
@@ -63,16 +62,11 @@ class InterruptedException(BaseException):
pass
-# MPS fix for randn in torchsde
-# XXX move this to separate file for MPS
-def torchsde_randn(size, dtype, device, seed):
- if device.type == 'mps':
+if opts.randn_source == "CPU":
+ import torchsde._brownian.brownian_interval
+
+ def torchsde_randn(size, dtype, device, seed):
generator = torch.Generator(devices.cpu).manual_seed(int(seed))
return torch.randn(size, dtype=dtype, device=devices.cpu, generator=generator).to(device)
- else:
- generator = torch.Generator(device).manual_seed(int(seed))
- return torch.randn(size, dtype=dtype, device=device, generator=generator)
-
-
-torchsde._brownian.brownian_interval._randn = torchsde_randn
+ torchsde._brownian.brownian_interval._randn = torchsde_randn
diff --git a/modules/sd_samplers_compvis.py b/modules/sd_samplers_compvis.py
index d03131cd..bfcc5574 100644
--- a/modules/sd_samplers_compvis.py
+++ b/modules/sd_samplers_compvis.py
@@ -7,19 +7,27 @@ import torch
from modules.shared import state
from modules import sd_samplers_common, prompt_parser, shared
+import modules.models.diffusion.uni_pc
samplers_data_compvis = [
sd_samplers_common.SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}),
sd_samplers_common.SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}),
+ sd_samplers_common.SamplerData('UniPC', lambda model: VanillaStableDiffusionSampler(modules.models.diffusion.uni_pc.UniPCSampler, model), [], {}),
]
class VanillaStableDiffusionSampler:
def __init__(self, constructor, sd_model):
self.sampler = constructor(sd_model)
+ self.is_ddim = hasattr(self.sampler, 'p_sample_ddim')
self.is_plms = hasattr(self.sampler, 'p_sample_plms')
- self.orig_p_sample_ddim = self.sampler.p_sample_plms if self.is_plms else self.sampler.p_sample_ddim
+ self.is_unipc = isinstance(self.sampler, modules.models.diffusion.uni_pc.UniPCSampler)
+ self.orig_p_sample_ddim = None
+ if self.is_plms:
+ self.orig_p_sample_ddim = self.sampler.p_sample_plms
+ elif self.is_ddim:
+ self.orig_p_sample_ddim = self.sampler.p_sample_ddim
self.mask = None
self.nmask = None
self.init_latent = None
@@ -45,6 +53,15 @@ class VanillaStableDiffusionSampler:
return self.last_latent
def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs):
+ x_dec, ts, cond, unconditional_conditioning = self.before_sample(x_dec, ts, cond, unconditional_conditioning)
+
+ res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs)
+
+ x_dec, ts, cond, unconditional_conditioning, res = self.after_sample(x_dec, ts, cond, unconditional_conditioning, res)
+
+ return res
+
+ def before_sample(self, x, ts, cond, unconditional_conditioning):
if state.interrupted or state.skipped:
raise sd_samplers_common.InterruptedException
@@ -53,8 +70,13 @@ class VanillaStableDiffusionSampler:
# Have to unwrap the inpainting conditioning here to perform pre-processing
image_conditioning = None
+ uc_image_conditioning = None
if isinstance(cond, dict):
- image_conditioning = cond["c_concat"][0]
+ if self.conditioning_key == "crossattn-adm":
+ image_conditioning = cond["c_adm"]
+ uc_image_conditioning = unconditional_conditioning["c_adm"]
+ else:
+ image_conditioning = cond["c_concat"][0]
cond = cond["c_crossattn"][0]
unconditional_conditioning = unconditional_conditioning["c_crossattn"][0]
@@ -76,20 +98,25 @@ class VanillaStableDiffusionSampler:
if self.mask is not None:
img_orig = self.sampler.model.q_sample(self.init_latent, ts)
- x_dec = img_orig * self.mask + self.nmask * x_dec
+ x = img_orig * self.mask + self.nmask * x
# Wrap the image conditioning back up since the DDIM code can accept the dict directly.
# Note that they need to be lists because it just concatenates them later.
if image_conditioning is not None:
- cond = {"c_concat": [image_conditioning], "c_crossattn": [cond]}
- unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
+ if self.conditioning_key == "crossattn-adm":
+ cond = {"c_adm": image_conditioning, "c_crossattn": [cond]}
+ unconditional_conditioning = {"c_adm": uc_image_conditioning, "c_crossattn": [unconditional_conditioning]}
+ else:
+ cond = {"c_concat": [image_conditioning], "c_crossattn": [cond]}
+ unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
- res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs)
+ return x, ts, cond, unconditional_conditioning
+ def update_step(self, last_latent):
if self.mask is not None:
- self.last_latent = self.init_latent * self.mask + self.nmask * res[1]
+ self.last_latent = self.init_latent * self.mask + self.nmask * last_latent
else:
- self.last_latent = res[1]
+ self.last_latent = last_latent
sd_samplers_common.store_latent(self.last_latent)
@@ -97,26 +124,51 @@ class VanillaStableDiffusionSampler:
state.sampling_step = self.step
shared.total_tqdm.update()
- return res
+ def after_sample(self, x, ts, cond, uncond, res):
+ if not self.is_unipc:
+ self.update_step(res[1])
+
+ return x, ts, cond, uncond, res
+
+ def unipc_after_update(self, x, model_x):
+ self.update_step(x)
def initialize(self, p):
self.eta = p.eta if p.eta is not None else shared.opts.eta_ddim
if self.eta != 0.0:
p.extra_generation_params["Eta DDIM"] = self.eta
+ if self.is_unipc:
+ keys = [
+ ('UniPC variant', 'uni_pc_variant'),
+ ('UniPC skip type', 'uni_pc_skip_type'),
+ ('UniPC order', 'uni_pc_order'),
+ ('UniPC lower order final', 'uni_pc_lower_order_final'),
+ ]
+
+ for name, key in keys:
+ v = getattr(shared.opts, key)
+ if v != shared.opts.get_default(key):
+ p.extra_generation_params[name] = v
+
for fieldname in ['p_sample_ddim', 'p_sample_plms']:
if hasattr(self.sampler, fieldname):
setattr(self.sampler, fieldname, self.p_sample_ddim_hook)
+ if self.is_unipc:
+ self.sampler.set_hooks(lambda x, t, c, u: self.before_sample(x, t, c, u), lambda x, t, c, u, r: self.after_sample(x, t, c, u, r), lambda x, mx: self.unipc_after_update(x, mx))
self.mask = p.mask if hasattr(p, 'mask') else None
self.nmask = p.nmask if hasattr(p, 'nmask') else None
+
def adjust_steps_if_invalid(self, p, num_steps):
- if (self.config.name == 'DDIM' and p.ddim_discretize == 'uniform') or (self.config.name == 'PLMS'):
+ if ((self.config.name == 'DDIM') and p.ddim_discretize == 'uniform') or (self.config.name == 'PLMS') or (self.config.name == 'UniPC'):
+ if self.config.name == 'UniPC' and num_steps < shared.opts.uni_pc_order:
+ num_steps = shared.opts.uni_pc_order
valid_step = 999 / (1000 // num_steps)
if valid_step == math.floor(valid_step):
return int(valid_step) + 1
-
+
return num_steps
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
@@ -133,8 +185,12 @@ class VanillaStableDiffusionSampler:
# Wrap the conditioning models with additional image conditioning for inpainting model
if image_conditioning is not None:
- conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]}
- unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
+ if self.conditioning_key == "crossattn-adm":
+ conditioning = {"c_adm": image_conditioning, "c_crossattn": [conditioning]}
+ unconditional_conditioning = {"c_adm": torch.zeros_like(image_conditioning), "c_crossattn": [unconditional_conditioning]}
+ else:
+ conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]}
+ unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
samples = self.launch_sampling(t_enc + 1, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning))
@@ -152,8 +208,12 @@ class VanillaStableDiffusionSampler:
# Wrap the conditioning models with additional image conditioning for inpainting model
# dummy_for_plms is needed because PLMS code checks the first item in the dict to have the right shape
if image_conditioning is not None:
- conditioning = {"dummy_for_plms": np.zeros((conditioning.shape[0],)), "c_crossattn": [conditioning], "c_concat": [image_conditioning]}
- unconditional_conditioning = {"c_crossattn": [unconditional_conditioning], "c_concat": [image_conditioning]}
+ if self.conditioning_key == "crossattn-adm":
+ conditioning = {"dummy_for_plms": np.zeros((conditioning.shape[0],)), "c_crossattn": [conditioning], "c_adm": image_conditioning}
+ unconditional_conditioning = {"c_crossattn": [unconditional_conditioning], "c_adm": torch.zeros_like(image_conditioning)}
+ else:
+ conditioning = {"dummy_for_plms": np.zeros((conditioning.shape[0],)), "c_crossattn": [conditioning], "c_concat": [image_conditioning]}
+ unconditional_conditioning = {"c_crossattn": [unconditional_conditioning], "c_concat": [image_conditioning]}
samples_ddim = self.launch_sampling(steps, lambda: self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)[0])
diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py
index aa7f106b..eb98e599 100644
--- a/modules/sd_samplers_kdiffusion.py
+++ b/modules/sd_samplers_kdiffusion.py
@@ -1,12 +1,14 @@
from collections import deque
import torch
import inspect
+import einops
import k_diffusion.sampling
from modules import prompt_parser, devices, sd_samplers_common
from modules.shared import opts, state
import modules.shared as shared
from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
+from modules.script_callbacks import CFGDenoisedParams, cfg_denoised_callback
samplers_k_diffusion = [
('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {}),
@@ -56,6 +58,7 @@ class CFGDenoiser(torch.nn.Module):
self.nmask = None
self.init_latent = None
self.step = 0
+ self.image_cfg_scale = None
def combine_denoised(self, x_out, conds_list, uncond, cond_scale):
denoised_uncond = x_out[-uncond.shape[0]:]
@@ -67,61 +70,118 @@ class CFGDenoiser(torch.nn.Module):
return denoised
- def forward(self, x, sigma, uncond, cond, cond_scale, image_cond):
+ def combine_denoised_for_edit_model(self, x_out, cond_scale):
+ out_cond, out_img_cond, out_uncond = x_out.chunk(3)
+ denoised = out_uncond + cond_scale * (out_cond - out_img_cond) + self.image_cfg_scale * (out_img_cond - out_uncond)
+
+ return denoised
+
+ def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond):
if state.interrupted or state.skipped:
raise sd_samplers_common.InterruptedException
+ # at self.image_cfg_scale == 1.0 produced results for edit model are the same as with normal sampling,
+ # so is_edit_model is set to False to support AND composition.
+ is_edit_model = shared.sd_model.cond_stage_key == "edit" and self.image_cfg_scale is not None and self.image_cfg_scale != 1.0
+
conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step)
+ assert not is_edit_model or all([len(conds) == 1 for conds in conds_list]), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)"
+
batch_size = len(conds_list)
repeats = [len(conds_list[i]) for i in range(batch_size)]
- x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
- image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond])
- sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
+ if shared.sd_model.model.conditioning_key == "crossattn-adm":
+ image_uncond = torch.zeros_like(image_cond)
+ make_condition_dict = lambda c_crossattn, c_adm: {"c_crossattn": c_crossattn, "c_adm": c_adm}
+ else:
+ image_uncond = image_cond
+ make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": c_crossattn, "c_concat": [c_concat]}
- denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps)
+ if not is_edit_model:
+ x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
+ sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
+ image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond])
+ else:
+ x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x] + [x])
+ sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma])
+ image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond] + [torch.zeros_like(self.init_latent)])
+
+ denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps, tensor, uncond)
cfg_denoiser_callback(denoiser_params)
x_in = denoiser_params.x
image_cond_in = denoiser_params.image_cond
sigma_in = denoiser_params.sigma
-
- if tensor.shape[1] == uncond.shape[1]:
- cond_in = torch.cat([tensor, uncond])
+ tensor = denoiser_params.text_cond
+ uncond = denoiser_params.text_uncond
+ skip_uncond = False
+
+ # alternating uncond allows for higher thresholds without the quality loss normally expected from raising it
+ if self.step % 2 and s_min_uncond > 0 and sigma[0] < s_min_uncond and not is_edit_model:
+ skip_uncond = True
+ x_in = x_in[:-batch_size]
+ sigma_in = sigma_in[:-batch_size]
+
+ if tensor.shape[1] == uncond.shape[1] or skip_uncond:
+ if is_edit_model:
+ cond_in = torch.cat([tensor, uncond, uncond])
+ elif skip_uncond:
+ cond_in = tensor
+ else:
+ cond_in = torch.cat([tensor, uncond])
if shared.batch_cond_uncond:
- x_out = self.inner_model(x_in, sigma_in, cond={"c_crossattn": [cond_in], "c_concat": [image_cond_in]})
+ x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict([cond_in], image_cond_in))
else:
x_out = torch.zeros_like(x_in)
for batch_offset in range(0, x_out.shape[0], batch_size):
a = batch_offset
b = a + batch_size
- x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [cond_in[a:b]], "c_concat": [image_cond_in[a:b]]})
+ x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict([cond_in[a:b]], image_cond_in[a:b]))
else:
x_out = torch.zeros_like(x_in)
batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size
for batch_offset in range(0, tensor.shape[0], batch_size):
a = batch_offset
b = min(a + batch_size, tensor.shape[0])
- x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [tensor[a:b]], "c_concat": [image_cond_in[a:b]]})
- x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]})
+ if not is_edit_model:
+ c_crossattn = [tensor[a:b]]
+ else:
+ c_crossattn = torch.cat([tensor[a:b]], uncond)
+
+ x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b]))
+
+ if not skip_uncond:
+ x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict([uncond], image_cond_in[-uncond.shape[0]:]))
+
+ denoised_image_indexes = [x[0][0] for x in conds_list]
+ if skip_uncond:
+ fake_uncond = torch.cat([x_out[i:i+1] for i in denoised_image_indexes])
+ x_out = torch.cat([x_out, fake_uncond]) # we skipped uncond denoising, so we put cond-denoised image to where the uncond-denoised image should be
+
+ denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps)
+ cfg_denoised_callback(denoised_params)
devices.test_for_nans(x_out, "unet")
if opts.live_preview_content == "Prompt":
- sd_samplers_common.store_latent(x_out[0:uncond.shape[0]])
+ sd_samplers_common.store_latent(torch.cat([x_out[i:i+1] for i in denoised_image_indexes]))
elif opts.live_preview_content == "Negative prompt":
sd_samplers_common.store_latent(x_out[-uncond.shape[0]:])
- denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
+ if is_edit_model:
+ denoised = self.combine_denoised_for_edit_model(x_out, cond_scale)
+ elif skip_uncond:
+ denoised = self.combine_denoised(x_out, conds_list, uncond, 1.0)
+ else:
+ denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
if self.mask is not None:
denoised = self.init_latent * self.mask + self.nmask * denoised
self.step += 1
-
return denoised
@@ -146,7 +206,7 @@ class TorchHijack:
if noise.shape == x.shape:
return noise
- if x.device.type == 'mps':
+ if opts.randn_source == "CPU" or x.device.type == 'mps':
return torch.randn_like(x, device=devices.cpu).to(x.device)
else:
return torch.randn_like(x)
@@ -166,6 +226,7 @@ class KDiffusionSampler:
self.eta = None
self.config = None
self.last_latent = None
+ self.s_min_uncond = None
self.conditioning_key = sd_model.model.conditioning_key
@@ -198,7 +259,9 @@ class KDiffusionSampler:
self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
self.model_wrap_cfg.step = 0
+ self.model_wrap_cfg.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
self.eta = p.eta if p.eta is not None else opts.eta_ancestral
+ self.s_min_uncond = getattr(p, 's_min_uncond', 0.0)
k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else [])
@@ -237,6 +300,16 @@ class KDiffusionSampler:
return sigmas
+ def create_noise_sampler(self, x, sigmas, p):
+ """For DPM++ SDE: manually create noise sampler to enable deterministic results across different batch sizes"""
+ if shared.opts.no_dpmpp_sde_batch_determinism:
+ return None
+
+ from k_diffusion.sampling import BrownianTreeNoiseSampler
+ sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
+ current_iter_seeds = p.all_seeds[p.iteration * p.batch_size:(p.iteration + 1) * p.batch_size]
+ return BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=current_iter_seeds)
+
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps)
@@ -246,31 +319,39 @@ class KDiffusionSampler:
xi = x + noise * sigma_sched[0]
extra_params_kwargs = self.initialize(p)
- if 'sigma_min' in inspect.signature(self.func).parameters:
+ parameters = inspect.signature(self.func).parameters
+
+ if 'sigma_min' in parameters:
## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
extra_params_kwargs['sigma_min'] = sigma_sched[-2]
- if 'sigma_max' in inspect.signature(self.func).parameters:
+ if 'sigma_max' in parameters:
extra_params_kwargs['sigma_max'] = sigma_sched[0]
- if 'n' in inspect.signature(self.func).parameters:
+ if 'n' in parameters:
extra_params_kwargs['n'] = len(sigma_sched) - 1
- if 'sigma_sched' in inspect.signature(self.func).parameters:
+ if 'sigma_sched' in parameters:
extra_params_kwargs['sigma_sched'] = sigma_sched
- if 'sigmas' in inspect.signature(self.func).parameters:
+ if 'sigmas' in parameters:
extra_params_kwargs['sigmas'] = sigma_sched
+ if self.funcname == 'sample_dpmpp_sde':
+ noise_sampler = self.create_noise_sampler(x, sigmas, p)
+ extra_params_kwargs['noise_sampler'] = noise_sampler
+
self.model_wrap_cfg.init_latent = x
self.last_latent = x
-
- samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args={
+ extra_args={
'cond': conditioning,
'image_cond': image_conditioning,
'uncond': unconditional_conditioning,
- 'cond_scale': p.cfg_scale
- }, disable=False, callback=self.callback_state, **extra_params_kwargs))
+ 'cond_scale': p.cfg_scale,
+ 's_min_uncond': self.s_min_uncond
+ }
+
+ samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
return samples
- def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning = None):
+ def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
steps = steps or p.steps
sigmas = self.get_sigmas(p, steps)
@@ -278,20 +359,27 @@ class KDiffusionSampler:
x = x * sigmas[0]
extra_params_kwargs = self.initialize(p)
- if 'sigma_min' in inspect.signature(self.func).parameters:
+ parameters = inspect.signature(self.func).parameters
+
+ if 'sigma_min' in parameters:
extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item()
extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item()
- if 'n' in inspect.signature(self.func).parameters:
+ if 'n' in parameters:
extra_params_kwargs['n'] = steps
else:
extra_params_kwargs['sigmas'] = sigmas
+ if self.funcname == 'sample_dpmpp_sde':
+ noise_sampler = self.create_noise_sampler(x, sigmas, p)
+ extra_params_kwargs['noise_sampler'] = noise_sampler
+
self.last_latent = x
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
'cond': conditioning,
'image_cond': image_conditioning,
'uncond': unconditional_conditioning,
- 'cond_scale': p.cfg_scale
+ 'cond_scale': p.cfg_scale,
+ 's_min_uncond': self.s_min_uncond
}, disable=False, callback=self.callback_state, **extra_params_kwargs))
return samples
diff --git a/modules/sd_vae_approx.py b/modules/sd_vae_approx.py
index 0027343a..e2f00468 100644
--- a/modules/sd_vae_approx.py
+++ b/modules/sd_vae_approx.py
@@ -35,8 +35,11 @@ def model():
global sd_vae_approx_model
if sd_vae_approx_model is None:
+ model_path = os.path.join(paths.models_path, "VAE-approx", "model.pt")
sd_vae_approx_model = VAEApprox()
- sd_vae_approx_model.load_state_dict(torch.load(os.path.join(paths.models_path, "VAE-approx", "model.pt"), map_location='cpu' if devices.device.type != 'cuda' else None))
+ if not os.path.exists(model_path):
+ model_path = os.path.join(paths.script_path, "models", "VAE-approx", "model.pt")
+ sd_vae_approx_model.load_state_dict(torch.load(model_path, map_location='cpu' if devices.device.type != 'cuda' else None))
sd_vae_approx_model.eval()
sd_vae_approx_model.to(devices.device, devices.dtype)
diff --git a/modules/shared.py b/modules/shared.py
index 5600d480..6a2b3c2b 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -4,6 +4,7 @@ import json
import os
import sys
import time
+import requests
from PIL import Image
import gradio as gr
@@ -13,106 +14,21 @@ import modules.interrogate
import modules.memmon
import modules.styles
import modules.devices as devices
-from modules import localization, extensions, script_loading, errors, ui_components, shared_items
-from modules.paths import models_path, script_path, data_path
-
+from modules import localization, script_loading, errors, ui_components, shared_items, cmd_args
+from modules.paths_internal import models_path, script_path, data_path, sd_configs_path, sd_default_config, sd_model_file, default_sd_model_file, extensions_dir, extensions_builtin_dir
demo = None
-sd_configs_path = os.path.join(script_path, "configs")
-sd_default_config = os.path.join(sd_configs_path, "v1-inference.yaml")
-sd_model_file = os.path.join(script_path, 'model.ckpt')
-default_sd_model_file = sd_model_file
-
-parser = argparse.ArgumentParser()
-parser.add_argument("--data-dir", type=str, default=os.path.dirname(os.path.dirname(os.path.realpath(__file__))), help="base path where all user data is stored",)
-parser.add_argument("--config", type=str, default=sd_default_config, help="path to config which constructs model",)
-parser.add_argument("--ckpt", type=str, default=sd_model_file, help="path to checkpoint of stable diffusion model; if specified, this checkpoint will be added to the list of checkpoints and loaded",)
-parser.add_argument("--ckpt-dir", type=str, default=None, help="Path to directory with stable diffusion checkpoints")
-parser.add_argument("--vae-dir", type=str, default=None, help="Path to directory with VAE files")
-parser.add_argument("--gfpgan-dir", type=str, help="GFPGAN directory", default=('./src/gfpgan' if os.path.exists('./src/gfpgan') else './GFPGAN'))
-parser.add_argument("--gfpgan-model", type=str, help="GFPGAN model file name", default=None)
-parser.add_argument("--no-half", action='store_true', help="do not switch the model to 16-bit floats")
-parser.add_argument("--no-half-vae", action='store_true', help="do not switch the VAE model to 16-bit floats")
-parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)")
-parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
-parser.add_argument("--embeddings-dir", type=str, default=os.path.join(data_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)")
-parser.add_argument("--textual-inversion-templates-dir", type=str, default=os.path.join(script_path, 'textual_inversion_templates'), help="directory with textual inversion templates")
-parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory")
-parser.add_argument("--localizations-dir", type=str, default=os.path.join(script_path, 'localizations'), help="localizations directory")
-parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui")
-parser.add_argument("--medvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a little speed for low VRM usage")
-parser.add_argument("--lowvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a lot of speed for very low VRM usage")
-parser.add_argument("--lowram", action='store_true', help="load stable diffusion checkpoint weights to VRAM instead of RAM")
-parser.add_argument("--always-batch-cond-uncond", action='store_true', help="disables cond/uncond batching that is enabled to save memory with --medvram or --lowvram")
-parser.add_argument("--unload-gfpgan", action='store_true', help="does not do anything.")
-parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast")
-parser.add_argument("--upcast-sampling", action='store_true', help="upcast sampling. No effect with --no-half. Usually produces similar results to --no-half with better performance while using less memory.")
-parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site")
-parser.add_argument("--ngrok", type=str, help="ngrok authtoken, alternative to gradio --share", default=None)
-parser.add_argument("--ngrok-region", type=str, help="The region in which ngrok should start.", default="us")
-parser.add_argument("--enable-insecure-extension-access", action='store_true', help="enable extensions tab regardless of other options")
-parser.add_argument("--codeformer-models-path", type=str, help="Path to directory with codeformer model file(s).", default=os.path.join(models_path, 'Codeformer'))
-parser.add_argument("--gfpgan-models-path", type=str, help="Path to directory with GFPGAN model file(s).", default=os.path.join(models_path, 'GFPGAN'))
-parser.add_argument("--esrgan-models-path", type=str, help="Path to directory with ESRGAN model file(s).", default=os.path.join(models_path, 'ESRGAN'))
-parser.add_argument("--bsrgan-models-path", type=str, help="Path to directory with BSRGAN model file(s).", default=os.path.join(models_path, 'BSRGAN'))
-parser.add_argument("--realesrgan-models-path", type=str, help="Path to directory with RealESRGAN model file(s).", default=os.path.join(models_path, 'RealESRGAN'))
-parser.add_argument("--clip-models-path", type=str, help="Path to directory with CLIP model file(s).", default=None)
-parser.add_argument("--xformers", action='store_true', help="enable xformers for cross attention layers")
-parser.add_argument("--force-enable-xformers", action='store_true', help="enable xformers for cross attention layers regardless of whether the checking code thinks you can run it; do not make bug reports if this fails to work")
-parser.add_argument("--xformers-flash-attention", action='store_true', help="enable xformers with Flash Attention to improve reproducibility (supported for SD2.x or variant only)")
-parser.add_argument("--deepdanbooru", action='store_true', help="does not do anything")
-parser.add_argument("--opt-split-attention", action='store_true', help="force-enables Doggettx's cross-attention layer optimization. By default, it's on for torch cuda.")
-parser.add_argument("--opt-sub-quad-attention", action='store_true', help="enable memory efficient sub-quadratic cross-attention layer optimization")
-parser.add_argument("--sub-quad-q-chunk-size", type=int, help="query chunk size for the sub-quadratic cross-attention layer optimization to use", default=1024)
-parser.add_argument("--sub-quad-kv-chunk-size", type=int, help="kv chunk size for the sub-quadratic cross-attention layer optimization to use", default=None)
-parser.add_argument("--sub-quad-chunk-threshold", type=int, help="the percentage of VRAM threshold for the sub-quadratic cross-attention layer optimization to use chunking", default=None)
-parser.add_argument("--opt-split-attention-invokeai", action='store_true', help="force-enables InvokeAI's cross-attention layer optimization. By default, it's on when cuda is unavailable.")
-parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find")
-parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization")
-parser.add_argument("--disable-nan-check", action='store_true', help="do not check if produced images/latent spaces have nans; useful for running without a checkpoint in CI")
-parser.add_argument("--use-cpu", nargs='+', help="use CPU as torch device for specified modules", default=[], type=str.lower)
-parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests")
-parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None)
-parser.add_argument("--show-negative-prompt", action='store_true', help="does not do anything", default=False)
-parser.add_argument("--ui-config-file", type=str, help="filename to use for ui configuration", default=os.path.join(data_path, 'ui-config.json'))
-parser.add_argument("--hide-ui-dir-config", action='store_true', help="hide directory configuration from webui", default=False)
-parser.add_argument("--freeze-settings", action='store_true', help="disable editing settings", default=False)
-parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default=os.path.join(data_path, 'config.json'))
-parser.add_argument("--gradio-debug", action='store_true', help="launch gradio with --debug option")
-parser.add_argument("--gradio-auth", type=str, help='set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
-parser.add_argument("--gradio-img2img-tool", type=str, help='does not do anything')
-parser.add_argument("--gradio-inpaint-tool", type=str, help="does not do anything")
-parser.add_argument("--opt-channelslast", action='store_true', help="change memory type for stable diffusion to channels last")
-parser.add_argument("--styles-file", type=str, help="filename to use for styles", default=os.path.join(data_path, 'styles.csv'))
-parser.add_argument("--autolaunch", action='store_true', help="open the webui URL in the system's default browser upon launch", default=False)
-parser.add_argument("--theme", type=str, help="launches the UI with light or dark theme", default=None)
-parser.add_argument("--use-textbox-seed", action='store_true', help="use textbox for seeds in UI (no up/down, but possible to input long seeds)", default=False)
-parser.add_argument("--disable-console-progressbars", action='store_true', help="do not output progressbars to console", default=False)
-parser.add_argument("--enable-console-prompts", action='store_true', help="print prompts to console when generating with txt2img and img2img", default=False)
-parser.add_argument('--vae-path', type=str, help='Checkpoint to use as VAE; setting this argument disables all settings related to VAE', default=None)
-parser.add_argument("--disable-safe-unpickle", action='store_true', help="disable checking pytorch models for malicious code", default=False)
-parser.add_argument("--api", action='store_true', help="use api=True to launch the API together with the webui (use --nowebui instead for only the API)")
-parser.add_argument("--api-auth", type=str, help='Set authentication for API like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
-parser.add_argument("--api-log", action='store_true', help="use api-log=True to enable logging of all API requests")
-parser.add_argument("--nowebui", action='store_true', help="use api=True to launch the API instead of the webui")
-parser.add_argument("--ui-debug-mode", action='store_true', help="Don't load model to quickly launch UI")
-parser.add_argument("--device-id", type=str, help="Select the default CUDA device to use (export CUDA_VISIBLE_DEVICES=0,1,etc might be needed before)", default=None)
-parser.add_argument("--administrator", action='store_true', help="Administrator rights", default=False)
-parser.add_argument("--cors-allow-origins", type=str, help="Allowed CORS origin(s) in the form of a comma-separated list (no spaces)", default=None)
-parser.add_argument("--cors-allow-origins-regex", type=str, help="Allowed CORS origin(s) in the form of a single regular expression", default=None)
-parser.add_argument("--tls-keyfile", type=str, help="Partially enables TLS, requires --tls-certfile to fully function", default=None)
-parser.add_argument("--tls-certfile", type=str, help="Partially enables TLS, requires --tls-keyfile to fully function", default=None)
-parser.add_argument("--server-name", type=str, help="Sets hostname of server", default=None)
-parser.add_argument("--gradio-queue", action='store_true', help="Uses gradio queue; experimental option; breaks restart UI button")
-parser.add_argument("--skip-version-check", action='store_true', help="Do not check versions of torch and xformers")
-
-
-
-script_loading.preload_extensions(extensions.extensions_dir, parser)
-script_loading.preload_extensions(extensions.extensions_builtin_dir, parser)
-
-cmd_opts = parser.parse_args()
+parser = cmd_args.parser
+
+script_loading.preload_extensions(extensions_dir, parser)
+script_loading.preload_extensions(extensions_builtin_dir, parser)
+
+if os.environ.get('IGNORE_CMD_ARGS_ERRORS', None) is None:
+ cmd_opts = parser.parse_args()
+else:
+ cmd_opts, _ = parser.parse_known_args()
+
restricted_opts = {
"samples_filename_pattern",
@@ -124,6 +40,7 @@ restricted_opts = {
"outdir_grids",
"outdir_txt2img_grids",
"outdir_save",
+ "outdir_init_images"
}
ui_reorder_categories = [
@@ -139,6 +56,21 @@ ui_reorder_categories = [
"scripts",
]
+# https://huggingface.co/datasets/freddyaboulton/gradio-theme-subdomains/resolve/main/subdomains.json
+gradio_hf_hub_themes = [
+ "gradio/glass",
+ "gradio/monochrome",
+ "gradio/seafoam",
+ "gradio/soft",
+ "freddyaboulton/dracula_revamped",
+ "gradio/dracula_test",
+ "abidlabs/dracula_test",
+ "abidlabs/pakistan",
+ "dawood/microsoft_windows",
+ "ysharma/steampunk"
+]
+
+
cmd_opts.disable_extension_access = (cmd_opts.share or cmd_opts.listen or cmd_opts.server_name) and not cmd_opts.enable_insecure_extension_access
devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_esrgan, devices.device_codeformer = \
@@ -303,6 +235,7 @@ def list_samplers():
hide_dirs = {"visible": not cmd_opts.hide_ui_dir_config}
+tab_names = []
options_templates = {}
@@ -324,13 +257,19 @@ options_templates.update(options_section(('saving-images', "Saving images/grids"
"save_images_before_face_restoration": OptionInfo(False, "Save a copy of image before doing face restoration."),
"save_images_before_highres_fix": OptionInfo(False, "Save a copy of image before applying highres fix."),
"save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),
+ "save_mask": OptionInfo(False, "For inpainting, save a copy of the greyscale mask"),
+ "save_mask_composite": OptionInfo(False, "For inpainting, save a masked composite"),
"jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}),
- "export_for_4chan": OptionInfo(True, "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG"),
+ "webp_lossless": OptionInfo(False, "Use lossless compression for webp images"),
+ "export_for_4chan": OptionInfo(True, "If the saved image file size is above the limit, or its either width or height are above the limit, save a downscaled copy as JPG"),
+ "img_downscale_threshold": OptionInfo(4.0, "File size limit for the above option, MB", gr.Number),
+ "target_side_length": OptionInfo(4000, "Width/height limit for the above option, in pixels", gr.Number),
+ "img_max_size_mp": OptionInfo(200, "Maximum image size, in megapixels", gr.Number),
"use_original_name_batch": OptionInfo(True, "Use original name for output filename during batch process in extras tab"),
"use_upscaler_name_as_suffix": OptionInfo(False, "Use upscaler name as filename suffix in the extras tab"),
"save_selected_only": OptionInfo(True, "When using 'Save' button, only save a single selected image"),
- "do_not_add_watermark": OptionInfo(False, "Do not add watermark to images"),
+ "save_init_img": OptionInfo(False, "Save init images when using img2img"),
"temp_dir": OptionInfo("", "Directory for temporary images; leave empty for default"),
"clean_temp_dir_at_start": OptionInfo(False, "Cleanup non-default temporary directory when starting webui"),
@@ -346,6 +285,7 @@ options_templates.update(options_section(('saving-paths', "Paths for saving"), {
"outdir_txt2img_grids": OptionInfo("outputs/txt2img-grids", 'Output directory for txt2img grids', component_args=hide_dirs),
"outdir_img2img_grids": OptionInfo("outputs/img2img-grids", 'Output directory for img2img grids', component_args=hide_dirs),
"outdir_save": OptionInfo("log/images", "Directory for saving images using the Save button", component_args=hide_dirs),
+ "outdir_init_images": OptionInfo("outputs/init-images", "Directory for saving init images when using img2img", component_args=hide_dirs),
}))
options_templates.update(options_section(('saving-to-dirs', "Saving to a directory"), {
@@ -361,10 +301,12 @@ options_templates.update(options_section(('upscaling', "Upscaling"), {
"ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
"realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": shared_items.realesrgan_models_names()}),
"upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}),
+ "SCUNET_tile": OptionInfo(256, "Tile size for SCUNET upscalers. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}),
+ "SCUNET_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for SCUNET upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 64, "step": 1}),
}))
options_templates.update(options_section(('face-restoration', "Face restoration"), {
- "face_restoration_model": OptionInfo(None, "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in face_restorers]}),
+ "face_restoration_model": OptionInfo("CodeFormer", "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in face_restorers]}),
"code_former_weight": OptionInfo(0.5, "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
"face_restoration_unload": OptionInfo(False, "Move face restoration model from VRAM into RAM after processing"),
}))
@@ -409,12 +351,15 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
"comma_padding_backtrack": OptionInfo(20, "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1 }),
"CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}),
"upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"),
+ "randn_source": OptionInfo("GPU", "Random number generator source. Changes seeds drastically. Use CPU to produce the same picture across different vidocard vendors.", gr.Radio, {"choices": ["GPU", "CPU"]}),
}))
options_templates.update(options_section(('compatibility', "Compatibility"), {
"use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
"use_old_karras_scheduler_sigmas": OptionInfo(False, "Use old karras scheduler sigmas (0.1 to 10)."),
+ "no_dpmpp_sde_batch_determinism": OptionInfo(False, "Do not make DPM++ SDE deterministic across different batch sizes."),
"use_old_hires_fix_width_height": OptionInfo(False, "For hires fix, use width/height sliders to set final resolution rather than first pass (disables Upscale by, Resize width/height to)."),
+ "dont_fix_second_order_samplers_schedule": OptionInfo(False, "Do not fix prompt schedule for second order samplers."),
}))
options_templates.update(options_section(('interrogate', "Interrogate Options"), {
@@ -435,11 +380,16 @@ options_templates.update(options_section(('interrogate', "Interrogate Options"),
options_templates.update(options_section(('extra_networks', "Extra Networks"), {
"extra_networks_default_view": OptionInfo("cards", "Default view for Extra Networks", gr.Dropdown, {"choices": ["cards", "thumbs"]}),
"extra_networks_default_multiplier": OptionInfo(1.0, "Multiplier for extra networks", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
- "sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": [""] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
+ "extra_networks_card_width": OptionInfo(0, "Card width for Extra Networks (px)"),
+ "extra_networks_card_height": OptionInfo(0, "Card height for Extra Networks (px)"),
+ "extra_networks_add_text_separator": OptionInfo(" ", "Extra text to add before <...> when adding extra network to prompt"),
+ "sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
}))
options_templates.update(options_section(('ui', "User interface"), {
"return_grid": OptionInfo(True, "Show grid in results for web"),
+ "return_mask": OptionInfo(False, "For inpainting, include the greyscale mask in results for web"),
+ "return_mask_composite": OptionInfo(False, "For inpainting, include masked composite in results for web"),
"do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
"add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"),
"add_model_name_to_info": OptionInfo(True, "Add model name to generation information"),
@@ -454,10 +404,13 @@ options_templates.update(options_section(('ui', "User interface"), {
"dimensions_and_batch_together": OptionInfo(True, "Show Width/Height and Batch sliders in same row"),
"keyedit_precision_attention": OptionInfo(0.1, "Ctrl+up/down precision when editing (attention:1.1)", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
"keyedit_precision_extra": OptionInfo(0.05, "Ctrl+up/down precision when editing <extra networks:0.9>", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
+ "keyedit_delimiters": OptionInfo(".,\/!?%^*;:{}=`~()", "Ctrl+up/down word delimiters"),
"quicksettings": OptionInfo("sd_model_checkpoint", "Quicksettings list"),
+ "hidden_tabs": OptionInfo([], "Hidden UI tabs (requires restart)", ui_components.DropdownMulti, lambda: {"choices": [x for x in tab_names]}),
"ui_reorder": OptionInfo(", ".join(ui_reorder_categories), "txt2img/img2img UI item order"),
"ui_extra_networks_tab_reorder": OptionInfo("", "Extra networks tab order"),
"localization": OptionInfo("None", "Localization (requires restart)", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)),
+ "gradio_theme": OptionInfo("Default", "Gradio theme (requires restart)", ui_components.DropdownEditable, lambda: {"choices": ["Default"] + gradio_hf_hub_themes})
}))
options_templates.update(options_section(('ui', "Live previews"), {
@@ -476,10 +429,15 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters"
"eta_ancestral": OptionInfo(1.0, "eta (noise multiplier) for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}),
's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
+ 's_min_uncond': OptionInfo(0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 4.0, "step": 0.01}),
's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}),
'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma"),
+ 'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "bh2", "vary_coeff"]}),
+ 'uni_pc_skip_type': OptionInfo("time_uniform", "UniPC skip type", gr.Radio, {"choices": ["time_uniform", "time_quadratic", "logSNR"]}),
+ 'uni_pc_order': OptionInfo(3, "UniPC order (must be < sampling steps)", gr.Slider, {"minimum": 1, "maximum": 50, "step": 1}),
+ 'uni_pc_lower_order_final': OptionInfo(True, "UniPC lower order final"),
}))
options_templates.update(options_section(('postprocessing', "Postprocessing"), {
@@ -489,7 +447,9 @@ options_templates.update(options_section(('postprocessing', "Postprocessing"), {
}))
options_templates.update(options_section((None, "Hidden options"), {
- "disabled_extensions": OptionInfo([], "Disable those extensions"),
+ "disabled_extensions": OptionInfo([], "Disable these extensions"),
+ "disable_all_extensions": OptionInfo("none", "Disable all extensions (preserves the list of disabled extensions)", gr.Radio, {"choices": ["none", "extra", "all"]}),
+ "restore_config_state_file": OptionInfo("", "Config state file to restore from, under 'config-states/' folder"),
"sd_checkpoint_hash": OptionInfo("", "SHA256 hash of the current checkpoint"),
}))
@@ -554,6 +514,15 @@ class Options:
return True
+ def get_default(self, key):
+ """returns the default value for the key"""
+
+ data_label = self.data_labels.get(key)
+ if data_label is None:
+ return None
+
+ return data_label.default
+
def save(self, filename):
assert not cmd_opts.freeze_settings, "saving settings is disabled"
@@ -657,6 +626,24 @@ clip_model = None
progress_print_out = sys.stdout
+gradio_theme = gr.themes.Base()
+
+
+def reload_gradio_theme(theme_name=None):
+ global gradio_theme
+ if not theme_name:
+ theme_name = opts.gradio_theme
+
+ if theme_name == "Default":
+ gradio_theme = gr.themes.Default()
+ else:
+ try:
+ gradio_theme = gr.themes.ThemeClass.from_hub(theme_name)
+ except requests.exceptions.ConnectionError:
+ print("Can't access HuggingFace Hub, falling back to default Gradio theme")
+ gradio_theme = gr.themes.Default()
+
+
class TotalTQDM:
def __init__(self):
@@ -686,6 +673,7 @@ class TotalTQDM:
def clear(self):
if self._tqdm is not None:
+ self._tqdm.refresh()
self._tqdm.close()
self._tqdm = None
@@ -697,7 +685,7 @@ mem_mon.start()
def listfiles(dirname):
- filenames = [os.path.join(dirname, x) for x in sorted(os.listdir(dirname)) if not x.startswith(".")]
+ filenames = [os.path.join(dirname, x) for x in sorted(os.listdir(dirname), key=str.lower) if not x.startswith(".")]
return [file for file in filenames if os.path.isfile(file)]
diff --git a/modules/shared_items.py b/modules/shared_items.py
index 8b5ec96d..e792a134 100644
--- a/modules/shared_items.py
+++ b/modules/shared_items.py
@@ -20,4 +20,4 @@ def sd_vae_items():
def refresh_vae_list():
import modules.sd_vae
- return modules.sd_vae.refresh_vae_list
+ modules.sd_vae.refresh_vae_list()
diff --git a/modules/styles.py b/modules/styles.py
index 990d5623..9ed85991 100644
--- a/modules/styles.py
+++ b/modules/styles.py
@@ -72,16 +72,14 @@ class StyleDatabase:
return apply_styles_to_prompt(prompt, [self.styles.get(x, self.no_style).negative_prompt for x in styles])
def save_styles(self, path: str) -> None:
- # Write to temporary file first, so we don't nuke the file if something goes wrong
- fd, temp_path = tempfile.mkstemp(".csv")
+ # Always keep a backup file around
+ if os.path.exists(path):
+ shutil.copy(path, path + ".bak")
+
+ fd = os.open(path, os.O_RDWR|os.O_CREAT)
with os.fdopen(fd, "w", encoding="utf-8-sig", newline='') as file:
# _fields is actually part of the public API: typing.NamedTuple is a replacement for collections.NamedTuple,
# and collections.NamedTuple has explicit documentation for accessing _fields. Same goes for _asdict()
writer = csv.DictWriter(file, fieldnames=PromptStyle._fields)
writer.writeheader()
writer.writerows(style._asdict() for k, style in self.styles.items())
-
- # Always keep a backup file around
- if os.path.exists(path):
- shutil.move(path, path + ".bak")
- shutil.move(temp_path, path)
diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py
index d31963d4..af9fbcf2 100644
--- a/modules/textual_inversion/dataset.py
+++ b/modules/textual_inversion/dataset.py
@@ -19,9 +19,10 @@ re_numbers_at_start = re.compile(r"^[-\d]+\s*")
class DatasetEntry:
- def __init__(self, filename=None, filename_text=None, latent_dist=None, latent_sample=None, cond=None, cond_text=None, pixel_values=None):
+ def __init__(self, filename=None, filename_text=None, latent_dist=None, latent_sample=None, cond=None, cond_text=None, pixel_values=None, weight=None):
self.filename = filename
self.filename_text = filename_text
+ self.weight = weight
self.latent_dist = latent_dist
self.latent_sample = latent_sample
self.cond = cond
@@ -30,7 +31,7 @@ class DatasetEntry:
class PersonalizedBase(Dataset):
- def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, cond_model=None, device=None, template_file=None, include_cond=False, batch_size=1, gradient_step=1, shuffle_tags=False, tag_drop_out=0, latent_sampling_method='once', varsize=False):
+ def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, cond_model=None, device=None, template_file=None, include_cond=False, batch_size=1, gradient_step=1, shuffle_tags=False, tag_drop_out=0, latent_sampling_method='once', varsize=False, use_weight=False):
re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex) > 0 else None
self.placeholder_token = placeholder_token
@@ -56,10 +57,16 @@ class PersonalizedBase(Dataset):
print("Preparing dataset...")
for path in tqdm.tqdm(self.image_paths):
+ alpha_channel = None
if shared.state.interrupted:
raise Exception("interrupted")
try:
- image = Image.open(path).convert('RGB')
+ image = Image.open(path)
+ #Currently does not work for single color transparency
+ #We would need to read image.info['transparency'] for that
+ if use_weight and 'A' in image.getbands():
+ alpha_channel = image.getchannel('A')
+ image = image.convert('RGB')
if not varsize:
image = image.resize((width, height), PIL.Image.BICUBIC)
except Exception:
@@ -87,17 +94,35 @@ class PersonalizedBase(Dataset):
with devices.autocast():
latent_dist = model.encode_first_stage(torchdata.unsqueeze(dim=0))
- if latent_sampling_method == "once" or (latent_sampling_method == "deterministic" and not isinstance(latent_dist, DiagonalGaussianDistribution)):
- latent_sample = model.get_first_stage_encoding(latent_dist).squeeze().to(devices.cpu)
- latent_sampling_method = "once"
- entry = DatasetEntry(filename=path, filename_text=filename_text, latent_sample=latent_sample)
- elif latent_sampling_method == "deterministic":
- # Works only for DiagonalGaussianDistribution
- latent_dist.std = 0
- latent_sample = model.get_first_stage_encoding(latent_dist).squeeze().to(devices.cpu)
- entry = DatasetEntry(filename=path, filename_text=filename_text, latent_sample=latent_sample)
- elif latent_sampling_method == "random":
- entry = DatasetEntry(filename=path, filename_text=filename_text, latent_dist=latent_dist)
+ #Perform latent sampling, even for random sampling.
+ #We need the sample dimensions for the weights
+ if latent_sampling_method == "deterministic":
+ if isinstance(latent_dist, DiagonalGaussianDistribution):
+ # Works only for DiagonalGaussianDistribution
+ latent_dist.std = 0
+ else:
+ latent_sampling_method = "once"
+ latent_sample = model.get_first_stage_encoding(latent_dist).squeeze().to(devices.cpu)
+
+ if use_weight and alpha_channel is not None:
+ channels, *latent_size = latent_sample.shape
+ weight_img = alpha_channel.resize(latent_size)
+ npweight = np.array(weight_img).astype(np.float32)
+ #Repeat for every channel in the latent sample
+ weight = torch.tensor([npweight] * channels).reshape([channels] + latent_size)
+ #Normalize the weight to a minimum of 0 and a mean of 1, that way the loss will be comparable to default.
+ weight -= weight.min()
+ weight /= weight.mean()
+ elif use_weight:
+ #If an image does not have a alpha channel, add a ones weight map anyway so we can stack it later
+ weight = torch.ones(latent_sample.shape)
+ else:
+ weight = None
+
+ if latent_sampling_method == "random":
+ entry = DatasetEntry(filename=path, filename_text=filename_text, latent_dist=latent_dist, weight=weight)
+ else:
+ entry = DatasetEntry(filename=path, filename_text=filename_text, latent_sample=latent_sample, weight=weight)
if not (self.tag_drop_out != 0 or self.shuffle_tags):
entry.cond_text = self.create_text(filename_text)
@@ -110,6 +135,7 @@ class PersonalizedBase(Dataset):
del torchdata
del latent_dist
del latent_sample
+ del weight
self.length = len(self.dataset)
self.groups = list(groups.values())
@@ -195,6 +221,10 @@ class BatchLoader:
self.cond_text = [entry.cond_text for entry in data]
self.cond = [entry.cond for entry in data]
self.latent_sample = torch.stack([entry.latent_sample for entry in data]).squeeze(1)
+ if all(entry.weight is not None for entry in data):
+ self.weight = torch.stack([entry.weight for entry in data]).squeeze(1)
+ else:
+ self.weight = None
#self.emb_index = [entry.emb_index for entry in data]
#print(self.latent_sample.device)
diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py
index 2239cb84..4a29151d 100644
--- a/modules/textual_inversion/preprocess.py
+++ b/modules/textual_inversion/preprocess.py
@@ -11,7 +11,7 @@ from modules.shared import opts, cmd_opts
from modules.textual_inversion import autocrop
-def preprocess(id_task, process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False, process_multicrop=None, process_multicrop_mindim=None, process_multicrop_maxdim=None, process_multicrop_minarea=None, process_multicrop_maxarea=None, process_multicrop_objective=None, process_multicrop_threshold=None):
+def preprocess(id_task, process_src, process_dst, process_width, process_height, preprocess_txt_action, process_keep_original_size, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False, process_multicrop=None, process_multicrop_mindim=None, process_multicrop_maxdim=None, process_multicrop_minarea=None, process_multicrop_maxarea=None, process_multicrop_objective=None, process_multicrop_threshold=None):
try:
if process_caption:
shared.interrogator.load()
@@ -19,7 +19,7 @@ def preprocess(id_task, process_src, process_dst, process_width, process_height,
if process_caption_deepbooru:
deepbooru.model.start()
- preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru, split_threshold, overlap_ratio, process_focal_crop, process_focal_crop_face_weight, process_focal_crop_entropy_weight, process_focal_crop_edges_weight, process_focal_crop_debug, process_multicrop, process_multicrop_mindim, process_multicrop_maxdim, process_multicrop_minarea, process_multicrop_maxarea, process_multicrop_objective, process_multicrop_threshold)
+ preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_keep_original_size, process_flip, process_split, process_caption, process_caption_deepbooru, split_threshold, overlap_ratio, process_focal_crop, process_focal_crop_face_weight, process_focal_crop_entropy_weight, process_focal_crop_edges_weight, process_focal_crop_debug, process_multicrop, process_multicrop_mindim, process_multicrop_maxdim, process_multicrop_minarea, process_multicrop_maxarea, process_multicrop_objective, process_multicrop_threshold)
finally:
@@ -131,7 +131,7 @@ def multicrop_pic(image: Image, mindim, maxdim, minarea, maxarea, objective, thr
return wh and center_crop(image, *wh)
-def preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False, process_multicrop=None, process_multicrop_mindim=None, process_multicrop_maxdim=None, process_multicrop_minarea=None, process_multicrop_maxarea=None, process_multicrop_objective=None, process_multicrop_threshold=None):
+def preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_keep_original_size, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False, process_multicrop=None, process_multicrop_mindim=None, process_multicrop_maxdim=None, process_multicrop_minarea=None, process_multicrop_maxarea=None, process_multicrop_objective=None, process_multicrop_threshold=None):
width = process_width
height = process_height
src = os.path.abspath(process_src)
@@ -161,7 +161,9 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre
params.subindex = 0
filename = os.path.join(src, imagefile)
try:
- img = Image.open(filename).convert("RGB")
+ img = Image.open(filename)
+ img = ImageOps.exif_transpose(img)
+ img = img.convert("RGB")
except Exception:
continue
@@ -223,6 +225,10 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre
print(f"skipped {img.width}x{img.height} image {filename} (can't find suitable size within error threshold)")
process_default_resize = False
+ if process_keep_original_size:
+ save_pic(img, index, params, existing_caption=existing_caption)
+ process_default_resize = False
+
if process_default_resize:
img = images.resize_image(1, img, width, height)
save_pic(img, index, params, existing_caption=existing_caption)
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index a1a406c2..379df243 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -152,7 +152,11 @@ class EmbeddingDatabase:
name = data.get('name', name)
else:
data = extract_image_data_embed(embed_image)
- name = data.get('name', name)
+ if data:
+ name = data.get('name', name)
+ else:
+ # if data is None, means this is not an embeding, just a preview image
+ return
elif ext in ['.BIN', '.PT']:
data = torch.load(path, map_location="cpu")
elif ext in ['.SAFETENSORS']:
@@ -229,6 +233,12 @@ class EmbeddingDatabase:
self.load_from_dir(embdir)
embdir.update()
+ # re-sort word_embeddings because load_from_dir may not load in alphabetic order.
+ # using a temporary copy so we don't reinitialize self.word_embeddings in case other objects have a reference to it.
+ sorted_word_embeddings = {e.name: e for e in sorted(self.word_embeddings.values(), key=lambda e: e.name.lower())}
+ self.word_embeddings.clear()
+ self.word_embeddings.update(sorted_word_embeddings)
+
displayed_embeddings = (tuple(self.word_embeddings.keys()), tuple(self.skipped_embeddings.keys()))
if self.previously_displayed_embeddings != displayed_embeddings:
self.previously_displayed_embeddings = displayed_embeddings
@@ -351,7 +361,7 @@ def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, dat
assert log_directory, "Log directory is empty"
-def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_embedding_every, template_filename, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
+def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, use_weight, create_image_every, save_embedding_every, template_filename, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
save_embedding_every = save_embedding_every or 0
create_image_every = create_image_every or 0
template_file = textual_inversion_templates.get(template_filename, None)
@@ -410,7 +420,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st
pin_memory = shared.opts.pin_memory
- ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize)
+ ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize, use_weight=use_weight)
if shared.opts.save_training_settings_to_txt:
save_settings_to_file(log_directory, {**dict(model_name=checkpoint.model_name, model_hash=checkpoint.shorthash, num_of_dataset_images=len(ds), num_vectors_per_token=len(embedding.vec)), **locals()})
@@ -480,6 +490,8 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st
with devices.autocast():
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
+ if use_weight:
+ w = batch.weight.to(devices.device, non_blocking=pin_memory)
c = shared.sd_model.cond_stage_model(batch.cond_text)
if is_training_inpainting_model:
@@ -490,7 +502,11 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st
else:
cond = c
- loss = shared.sd_model(x, cond)[0] / gradient_step
+ if use_weight:
+ loss = shared.sd_model.weighted_forward(x, cond, w)[0] / gradient_step
+ del w
+ else:
+ loss = shared.sd_model.forward(x, cond)[0] / gradient_step
del x
_loss_step += loss.item()
diff --git a/modules/timer.py b/modules/timer.py
index 57a4f17a..ba92be33 100644
--- a/modules/timer.py
+++ b/modules/timer.py
@@ -33,3 +33,6 @@ class Timer:
res += ")"
return res
+
+ def reset(self):
+ self.__init__()
diff --git a/modules/ui.py b/modules/ui.py
index 5e34fb07..1130345c 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -20,7 +20,7 @@ from PIL import Image, PngImagePlugin
from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call
from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru, sd_vae, extra_networks, postprocessing, ui_components, ui_common, ui_postprocessing
-from modules.ui_components import FormRow, FormGroup, ToolButton, FormHTML
+from modules.ui_components import FormRow, FormColumn, FormGroup, ToolButton, FormHTML
from modules.paths import script_path, data_path
from modules.shared import opts, cmd_opts, restricted_opts
@@ -70,17 +70,6 @@ def gr_show(visible=True):
sample_img2img = "assets/stable-samples/img2img/sketch-mountains-input.jpg"
sample_img2img = sample_img2img if os.path.exists(sample_img2img) else None
-css_hide_progressbar = """
-.wrap .m-12 svg { display:none!important; }
-.wrap .m-12::before { content:"Loading..." }
-.wrap .z-20 svg { display:none!important; }
-.wrap .z-20::before { content:"Loading..." }
-.wrap.cover-bg .z-20::before { content:"" }
-.progress-bar { display:none!important; }
-.meta-text { display:none!important; }
-.meta-text-center { display:none!important; }
-"""
-
# Using constants for these since the variation selector isn't visible.
# Important that they exactly match script.js for tooltip to work.
random_symbol = '\U0001f3b2\ufe0f' # 🎲️
@@ -89,7 +78,7 @@ paste_symbol = '\u2199\ufe0f' # ↙
refresh_symbol = '\U0001f504' # 🔄
save_style_symbol = '\U0001f4be' # 💾
apply_style_symbol = '\U0001f4cb' # 📋
-clear_prompt_symbol = '\U0001F5D1' # 🗑️
+clear_prompt_symbol = '\U0001f5d1\ufe0f' # 🗑️
extra_networks_symbol = '\U0001F3B4' # 🎴
switch_values_symbol = '\U000021C5' # ⇅
@@ -105,6 +94,9 @@ def send_gradio_gallery_to_image(x):
def visit(x, func, path=""):
if hasattr(x, 'children'):
+ if isinstance(x, gr.Tabs) and x.elem_id is not None:
+ # Tabs element can't have a label, have to use elem_id instead
+ func(f"{path}/Tabs@{x.elem_id}", x)
for c in x.children:
visit(c, func, path)
elif x.label is not None:
@@ -138,6 +130,16 @@ def calc_resolution_hires(enable, width, height, hr_scale, hr_resize_x, hr_resiz
return f"resize: from <span class='resolution'>{p.width}x{p.height}</span> to <span class='resolution'>{p.hr_resize_x or p.hr_upscale_to_x}x{p.hr_resize_y or p.hr_upscale_to_y}</span>"
+def resize_from_to_html(width, height, scale_by):
+ target_width = int(width * scale_by)
+ target_height = int(height * scale_by)
+
+ if not target_width or not target_height:
+ return "no image selected"
+
+ return f"resize: from <span class='resolution'>{width}x{height}</span> to <span class='resolution'>{target_width}x{target_height}</span>"
+
+
def apply_styles(prompt, prompt_neg, styles):
prompt = shared.prompt_styles.apply_styles_to_prompt(prompt, styles)
prompt_neg = shared.prompt_styles.apply_negative_styles_to_prompt(prompt_neg, styles)
@@ -179,14 +181,13 @@ def interrogate_deepbooru(image):
def create_seed_inputs(target_interface):
- with FormRow(elem_id=target_interface + '_seed_row'):
+ with FormRow(elem_id=target_interface + '_seed_row', variant="compact"):
seed = (gr.Textbox if cmd_opts.use_textbox_seed else gr.Number)(label='Seed', value=-1, elem_id=target_interface + '_seed')
seed.style(container=False)
- random_seed = gr.Button(random_symbol, elem_id=target_interface + '_random_seed')
- reuse_seed = gr.Button(reuse_symbol, elem_id=target_interface + '_reuse_seed')
+ random_seed = ToolButton(random_symbol, elem_id=target_interface + '_random_seed', label='Random seed')
+ reuse_seed = ToolButton(reuse_symbol, elem_id=target_interface + '_reuse_seed', label='Reuse seed')
- with gr.Group(elem_id=target_interface + '_subseed_show_box'):
- seed_checkbox = gr.Checkbox(label='Extra', elem_id=target_interface + '_subseed_show', value=False)
+ seed_checkbox = gr.Checkbox(label='Extra', elem_id=target_interface + '_subseed_show', value=False)
# Components to show/hide based on the 'Extra' checkbox
seed_extras = []
@@ -195,8 +196,8 @@ def create_seed_inputs(target_interface):
seed_extras.append(seed_extra_row_1)
subseed = gr.Number(label='Variation seed', value=-1, elem_id=target_interface + '_subseed')
subseed.style(container=False)
- random_subseed = gr.Button(random_symbol, elem_id=target_interface + '_random_subseed')
- reuse_subseed = gr.Button(reuse_symbol, elem_id=target_interface + '_reuse_subseed')
+ random_subseed = ToolButton(random_symbol, elem_id=target_interface + '_random_subseed')
+ reuse_subseed = ToolButton(reuse_symbol, elem_id=target_interface + '_reuse_subseed')
subseed_strength = gr.Slider(label='Variation strength', value=0.0, minimum=0, maximum=1, step=0.01, elem_id=target_interface + '_subseed_strength')
with FormRow(visible=False) as seed_extra_row_2:
@@ -291,19 +292,19 @@ def create_toprow(is_img2img):
with gr.Row():
with gr.Column(scale=80):
with gr.Row():
- negative_prompt = gr.Textbox(label="Negative prompt", elem_id=f"{id_part}_neg_prompt", show_label=False, lines=2, placeholder="Negative prompt (press Ctrl+Enter or Alt+Enter to generate)")
+ negative_prompt = gr.Textbox(label="Negative prompt", elem_id=f"{id_part}_neg_prompt", show_label=False, lines=3, placeholder="Negative prompt (press Ctrl+Enter or Alt+Enter to generate)")
button_interrogate = None
button_deepbooru = None
if is_img2img:
- with gr.Column(scale=1, elem_id="interrogate_col"):
+ with gr.Column(scale=1, elem_classes="interrogate-col"):
button_interrogate = gr.Button('Interrogate\nCLIP', elem_id="interrogate")
button_deepbooru = gr.Button('Interrogate\nDeepBooru', elem_id="deepbooru")
with gr.Column(scale=1, elem_id=f"{id_part}_actions_column"):
- with gr.Row(elem_id=f"{id_part}_generate_box"):
- interrupt = gr.Button('Interrupt', elem_id=f"{id_part}_interrupt")
- skip = gr.Button('Skip', elem_id=f"{id_part}_skip")
+ with gr.Row(elem_id=f"{id_part}_generate_box", elem_classes="generate-box"):
+ interrupt = gr.Button('Interrupt', elem_id=f"{id_part}_interrupt", elem_classes="generate-box-interrupt")
+ skip = gr.Button('Skip', elem_id=f"{id_part}_skip", elem_classes="generate-box-skip")
submit = gr.Button('Generate', elem_id=f"{id_part}_generate", variant='primary')
skip.click(
@@ -325,9 +326,9 @@ def create_toprow(is_img2img):
prompt_style_apply = ToolButton(value=apply_style_symbol, elem_id=f"{id_part}_style_apply")
save_style = ToolButton(value=save_style_symbol, elem_id=f"{id_part}_style_create")
- token_counter = gr.HTML(value="<span></span>", elem_id=f"{id_part}_token_counter")
+ token_counter = gr.HTML(value="<span>0/75</span>", elem_id=f"{id_part}_token_counter", elem_classes=["token-counter"])
token_button = gr.Button(visible=False, elem_id=f"{id_part}_token_button")
- negative_token_counter = gr.HTML(value="<span></span>", elem_id=f"{id_part}_negative_token_counter")
+ negative_token_counter = gr.HTML(value="<span>0/75</span>", elem_id=f"{id_part}_negative_token_counter", elem_classes=["token-counter"])
negative_token_button = gr.Button(visible=False, elem_id=f"{id_part}_negative_token_button")
clear_prompt_button.click(
@@ -479,7 +480,9 @@ def create_ui():
width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="txt2img_width")
height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="txt2img_height")
- res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="txt2img_res_switch_btn")
+ with gr.Column(elem_id="txt2img_dimensions_row", scale=1, elem_classes="dimensions-tools"):
+ res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="txt2img_res_switch_btn", label="Switch dims")
+
if opts.dimensions_and_batch_together:
with gr.Column(elem_id="txt2img_column_batch"):
batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="txt2img_batch_count")
@@ -492,7 +495,7 @@ def create_ui():
seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs('txt2img')
elif category == "checkboxes":
- with FormRow(elem_id="txt2img_checkboxes", variant="compact"):
+ with FormRow(elem_classes="checkboxes-row", variant="compact"):
restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="txt2img_restore_faces")
tiling = gr.Checkbox(label='Tiling', value=False, elem_id="txt2img_tiling")
enable_hr = gr.Checkbox(label='Hires. fix', value=False, elem_id="txt2img_enable_hr")
@@ -586,7 +589,7 @@ def create_ui():
txt2img_prompt.submit(**txt2img_args)
submit.click(**txt2img_args)
- res_switch_btn.click(lambda w, h: (h, w), inputs=[width, height], outputs=[width, height])
+ res_switch_btn.click(lambda w, h: (h, w), inputs=[width, height], outputs=[width, height], show_progress=False)
txt_prompt_img.change(
fn=modules.images.image_data,
@@ -631,9 +634,9 @@ def create_ui():
(hr_resize_y, "Hires resize-2"),
*modules.scripts.scripts_txt2img.infotext_fields
]
- parameters_copypaste.add_paste_fields("txt2img", None, txt2img_paste_fields)
+ parameters_copypaste.add_paste_fields("txt2img", None, txt2img_paste_fields, override_settings)
parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding(
- paste_button=txt2img_paste, tabname="txt2img", source_text_component=txt2img_prompt, source_image_component=None, override_settings_component=override_settings,
+ paste_button=txt2img_paste, tabname="txt2img", source_text_component=txt2img_prompt, source_image_component=None,
))
txt2img_preview_params = [
@@ -683,6 +686,8 @@ def create_ui():
copy_image_buttons.append((button, name, elem))
with gr.Tabs(elem_id="mode_img2img"):
+ img2img_selected_tab = gr.State(0)
+
with gr.TabItem('img2img', id='img2img', elem_id="img2img_img2img_tab") as tab_img2img:
init_img = gr.Image(label="Image for img2img", elem_id="img2img_image", show_label=False, source="upload", interactive=True, type="pil", tool="editor", image_mode="RGBA").style(height=480)
add_copy_image_controls('img2img', init_img)
@@ -725,6 +730,12 @@ def create_ui():
img2img_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, elem_id="img2img_batch_output_dir")
img2img_batch_inpaint_mask_dir = gr.Textbox(label="Inpaint batch mask directory (required for inpaint batch processing only)", **shared.hide_dirs, elem_id="img2img_batch_inpaint_mask_dir")
+ img2img_tabs = [tab_img2img, tab_sketch, tab_inpaint, tab_inpaint_color, tab_inpaint_upload, tab_batch]
+ img2img_image_inputs = [init_img, sketch, init_img_with_mask, inpaint_color_sketch]
+
+ for i, tab in enumerate(img2img_tabs):
+ tab.select(fn=lambda tabnum=i: tabnum, inputs=[], outputs=[img2img_selected_tab])
+
def copy_image(img):
if isinstance(img, dict) and 'image' in img:
return img['image']
@@ -754,10 +765,35 @@ def create_ui():
elif category == "dimensions":
with FormRow():
with gr.Column(elem_id="img2img_column_size", scale=4):
- width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="img2img_width")
- height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="img2img_height")
+ selected_scale_tab = gr.State(value=0)
+
+ with gr.Tabs():
+ with gr.Tab(label="Resize to") as tab_scale_to:
+ with FormRow():
+ with gr.Column(elem_id="img2img_column_size", scale=4):
+ width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="img2img_width")
+ height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="img2img_height")
+ with gr.Column(elem_id="img2img_dimensions_row", scale=1, elem_classes="dimensions-tools"):
+ res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="img2img_res_switch_btn")
+
+ with gr.Tab(label="Resize by") as tab_scale_by:
+ scale_by = gr.Slider(minimum=0.05, maximum=4.0, step=0.05, label="Scale", value=1.0, elem_id="img2img_scale")
+
+ with FormRow():
+ scale_by_html = FormHTML(resize_from_to_html(0, 0, 0.0), elem_id="img2img_scale_resolution_preview")
+ gr.Slider(label="Unused", elem_id="img2img_unused_scale_by_slider")
+
+ scale_by.change(
+ fn=resize_from_to_html,
+ _js="currentImg2imgSourceResolution",
+ inputs=[dummy_component, dummy_component, scale_by],
+ outputs=scale_by_html,
+ show_progress=False,
+ )
+
+ tab_scale_to.select(fn=lambda: 0, inputs=[], outputs=[selected_scale_tab])
+ tab_scale_by.select(fn=lambda: 1, inputs=[], outputs=[selected_scale_tab])
- res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="img2img_res_switch_btn")
if opts.dimensions_and_batch_together:
with gr.Column(elem_id="img2img_column_batch"):
batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="img2img_batch_count")
@@ -765,14 +801,16 @@ def create_ui():
elif category == "cfg":
with FormGroup():
- cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0, elem_id="img2img_cfg_scale")
+ with FormRow():
+ cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0, elem_id="img2img_cfg_scale")
+ image_cfg_scale = gr.Slider(minimum=0, maximum=3.0, step=0.05, label='Image CFG Scale', value=1.5, elem_id="img2img_image_cfg_scale", visible=shared.sd_model and shared.sd_model.cond_stage_key == "edit")
denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.75, elem_id="img2img_denoising_strength")
elif category == "seed":
seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs('img2img')
elif category == "checkboxes":
- with FormRow(elem_id="img2img_checkboxes", variant="compact"):
+ with FormRow(elem_classes="checkboxes-row", variant="compact"):
restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="img2img_restore_faces")
tiling = gr.Checkbox(label='Tiling', value=False, elem_id="img2img_tiling")
@@ -812,7 +850,7 @@ def create_ui():
def select_img2img_tab(tab):
return gr.update(visible=tab in [2, 3, 4]), gr.update(visible=tab == 3),
- for i, elem in enumerate([tab_img2img, tab_sketch, tab_inpaint, tab_inpaint_color, tab_inpaint_upload, tab_batch]):
+ for i, elem in enumerate(img2img_tabs):
elem.select(
fn=lambda tab=i: select_img2img_tab(tab),
inputs=[],
@@ -861,11 +899,14 @@ def create_ui():
batch_count,
batch_size,
cfg_scale,
+ image_cfg_scale,
denoising_strength,
seed,
subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox,
+ selected_scale_tab,
height,
width,
+ scale_by,
resize_mode,
inpaint_full_res,
inpaint_full_res_padding,
@@ -901,7 +942,7 @@ def create_ui():
img2img_prompt.submit(**img2img_args)
submit.click(**img2img_args)
- res_switch_btn.click(lambda w, h: (h, w), inputs=[width, height], outputs=[width, height])
+ res_switch_btn.click(lambda w, h: (h, w), inputs=[width, height], outputs=[width, height], show_progress=False)
img2img_interrogate.click(
fn=lambda *args: process_interrogate(interrogate, *args),
@@ -936,7 +977,7 @@ def create_ui():
)
token_button.click(fn=update_token_counter, inputs=[img2img_prompt, steps], outputs=[token_counter])
- negative_token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[txt2img_negative_prompt, steps], outputs=[negative_token_counter])
+ negative_token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[img2img_negative_prompt, steps], outputs=[negative_token_counter])
ui_extra_networks.setup_ui(extra_networks_ui_img2img, img2img_gallery)
@@ -947,6 +988,7 @@ def create_ui():
(sampler_index, "Sampler"),
(restore_faces, "Face restoration"),
(cfg_scale, "CFG scale"),
+ (image_cfg_scale, "Image CFG scale"),
(seed, "Seed"),
(width, "Size-1"),
(height, "Size-2"),
@@ -959,10 +1001,10 @@ def create_ui():
(mask_blur, "Mask blur"),
*modules.scripts.scripts_img2img.infotext_fields
]
- parameters_copypaste.add_paste_fields("img2img", init_img, img2img_paste_fields)
- parameters_copypaste.add_paste_fields("inpaint", init_img_with_mask, img2img_paste_fields)
+ parameters_copypaste.add_paste_fields("img2img", init_img, img2img_paste_fields, override_settings)
+ parameters_copypaste.add_paste_fields("inpaint", init_img_with_mask, img2img_paste_fields, override_settings)
parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding(
- paste_button=img2img_paste, tabname="img2img", source_text_component=img2img_prompt, source_image_component=None, override_settings_component=override_settings,
+ paste_button=img2img_paste, tabname="img2img", source_text_component=img2img_prompt, source_image_component=None,
))
modules.scripts.scripts_current = None
@@ -1023,8 +1065,9 @@ def create_ui():
interp_method.change(fn=update_interp_description, inputs=[interp_method], outputs=[interp_description])
with FormRow():
- checkpoint_format = gr.Radio(choices=["ckpt", "safetensors"], value="ckpt", label="Checkpoint format", elem_id="modelmerger_checkpoint_format")
+ checkpoint_format = gr.Radio(choices=["ckpt", "safetensors"], value="safetensors", label="Checkpoint format", elem_id="modelmerger_checkpoint_format")
save_as_half = gr.Checkbox(value=False, label="Save as float16", elem_id="modelmerger_save_as_half")
+ save_metadata = gr.Checkbox(value=True, label="Save metadata (.safetensors only)", elem_id="modelmerger_save_metadata")
with FormRow():
with gr.Column():
@@ -1052,7 +1095,7 @@ def create_ui():
with gr.Row(variant="compact").style(equal_height=False):
with gr.Tabs(elem_id="train_tabs"):
- with gr.Tab(label="Create embedding"):
+ with gr.Tab(label="Create embedding", id="create_embedding"):
new_embedding_name = gr.Textbox(label="Name", elem_id="train_new_embedding_name")
initialization_text = gr.Textbox(label="Initialization text", value="*", elem_id="train_initialization_text")
nvpt = gr.Slider(label="Number of vectors per token", minimum=1, maximum=75, step=1, value=1, elem_id="train_nvpt")
@@ -1065,7 +1108,7 @@ def create_ui():
with gr.Column():
create_embedding = gr.Button(value="Create embedding", variant='primary', elem_id="train_create_embedding")
- with gr.Tab(label="Create hypernetwork"):
+ with gr.Tab(label="Create hypernetwork", id="create_hypernetwork"):
new_hypernetwork_name = gr.Textbox(label="Name", elem_id="train_new_hypernetwork_name")
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "1024", "320", "640", "1280"], elem_id="train_new_hypernetwork_sizes")
new_hypernetwork_layer_structure = gr.Textbox("1, 2, 1", label="Enter hypernetwork layer structure", placeholder="1st and last digit must be 1. ex:'1, 2, 1'", elem_id="train_new_hypernetwork_layer_structure")
@@ -1083,7 +1126,7 @@ def create_ui():
with gr.Column():
create_hypernetwork = gr.Button(value="Create hypernetwork", variant='primary', elem_id="train_create_hypernetwork")
- with gr.Tab(label="Preprocess images"):
+ with gr.Tab(label="Preprocess images", id="preprocess_images"):
process_src = gr.Textbox(label='Source directory', elem_id="train_process_src")
process_dst = gr.Textbox(label='Destination directory', elem_id="train_process_dst")
process_width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="train_process_width")
@@ -1091,6 +1134,7 @@ def create_ui():
preprocess_txt_action = gr.Dropdown(label='Existing Caption txt Action', value="ignore", choices=["ignore", "copy", "prepend", "append"], elem_id="train_preprocess_txt_action")
with gr.Row():
+ process_keep_original_size = gr.Checkbox(label='Keep original size', elem_id="train_process_keep_original_size")
process_flip = gr.Checkbox(label='Create flipped copies', elem_id="train_process_flip")
process_split = gr.Checkbox(label='Split oversized images', elem_id="train_process_split")
process_focal_crop = gr.Checkbox(label='Auto focal point crop', elem_id="train_process_focal_crop")
@@ -1150,7 +1194,7 @@ def create_ui():
def get_textual_inversion_template_names():
return sorted([x for x in textual_inversion.textual_inversion_templates])
- with gr.Tab(label="Train"):
+ with gr.Tab(label="Train", id="train"):
gr.HTML(value="<p style='margin-bottom: 0.7em'>Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images <a href=\"https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Textual-Inversion\" style=\"font-weight:bold;\">[wiki]</a></p>")
with FormRow():
train_embedding_name = gr.Dropdown(label='Embedding', elem_id="train_embedding", choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys()))
@@ -1187,6 +1231,8 @@ def create_ui():
create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0, elem_id="train_create_image_every")
save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0, elem_id="train_save_embedding_every")
+ use_weight = gr.Checkbox(label="Use PNG alpha channel as loss weight", value=False, elem_id="use_weight")
+
save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True, elem_id="train_save_image_with_stored_embedding")
preview_from_txt2img = gr.Checkbox(label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False, elem_id="train_preview_from_txt2img")
@@ -1206,7 +1252,7 @@ def create_ui():
with gr.Column(elem_id='ti_gallery_container'):
ti_output = gr.Text(elem_id="ti_output", value="", show_label=False)
- ti_gallery = gr.Gallery(label='Output', show_label=False, elem_id='ti_gallery').style(grid=4)
+ ti_gallery = gr.Gallery(label='Output', show_label=False, elem_id='ti_gallery').style(columns=4)
ti_progress = gr.HTML(elem_id="ti_progress", value="")
ti_outcome = gr.HTML(elem_id="ti_error", value="")
@@ -1255,6 +1301,7 @@ def create_ui():
process_width,
process_height,
preprocess_txt_action,
+ process_keep_original_size,
process_flip,
process_split,
process_caption,
@@ -1300,6 +1347,7 @@ def create_ui():
shuffle_tags,
tag_drop_out,
latent_sampling_method,
+ use_weight,
create_image_every,
save_embedding_every,
template_file,
@@ -1333,6 +1381,7 @@ def create_ui():
shuffle_tags,
tag_drop_out,
latent_sampling_method,
+ use_weight,
create_image_every,
save_embedding_every,
template_file,
@@ -1479,15 +1528,37 @@ def create_ui():
current_row.__exit__()
current_tab.__exit__()
- with gr.TabItem("Actions"):
+ with gr.TabItem("Actions", id="actions"):
request_notifications = gr.Button(value='Request browser notifications', elem_id="request_notifications")
download_localization = gr.Button(value='Download localization template', elem_id="download_localization")
reload_script_bodies = gr.Button(value='Reload custom script bodies (No ui updates, No restart)', variant='secondary', elem_id="settings_reload_script_bodies")
+ with gr.Row():
+ unload_sd_model = gr.Button(value='Unload SD checkpoint to free VRAM', elem_id="sett_unload_sd_model")
+ reload_sd_model = gr.Button(value='Reload the last SD checkpoint back into VRAM', elem_id="sett_reload_sd_model")
- with gr.TabItem("Licenses"):
+ with gr.TabItem("Licenses", id="licenses"):
gr.HTML(shared.html("licenses.html"), elem_id="licenses")
gr.Button(value="Show all pages", elem_id="settings_show_all_pages")
+
+
+ def unload_sd_weights():
+ modules.sd_models.unload_model_weights()
+
+ def reload_sd_weights():
+ modules.sd_models.reload_model_weights()
+
+ unload_sd_model.click(
+ fn=unload_sd_weights,
+ inputs=[],
+ outputs=[]
+ )
+
+ reload_sd_model.click(
+ fn=reload_sd_weights,
+ inputs=[],
+ outputs=[]
+ )
request_notifications.click(
fn=lambda: None,
@@ -1533,29 +1604,17 @@ def create_ui():
(train_interface, "Train", "ti"),
]
- css = ""
-
- for cssfile in modules.scripts.list_files_with_name("style.css"):
- if not os.path.isfile(cssfile):
- continue
-
- with open(cssfile, "r", encoding="utf8") as file:
- css += file.read() + "\n"
-
- if os.path.exists(os.path.join(data_path, "user.css")):
- with open(os.path.join(data_path, "user.css"), "r", encoding="utf8") as file:
- css += file.read() + "\n"
-
- if not cmd_opts.no_progressbar_hiding:
- css += css_hide_progressbar
-
interfaces += script_callbacks.ui_tabs_callback()
interfaces += [(settings_interface, "Settings", "settings")]
extensions_interface = ui_extensions.create_ui()
interfaces += [(extensions_interface, "Extensions", "extensions")]
- with gr.Blocks(css=css, analytics_enabled=False, title="Stable Diffusion") as demo:
+ shared.tab_names = []
+ for _interface, label, _ifid in interfaces:
+ shared.tab_names.append(label)
+
+ with gr.Blocks(theme=shared.gradio_theme, analytics_enabled=False, title="Stable Diffusion") as demo:
with gr.Row(elem_id="quicksettings", variant="compact"):
for i, k, item in sorted(quicksettings_list, key=lambda x: quicksettings_names.get(x[1], x[0])):
component = create_setting_component(k, is_quicksettings=True)
@@ -1565,6 +1624,8 @@ def create_ui():
with gr.Tabs(elem_id="tabs") as tabs:
for interface, label, ifid in interfaces:
+ if label in shared.opts.hidden_tabs:
+ continue
with gr.TabItem(label, id=ifid, elem_id='tab_' + ifid):
interface.render()
@@ -1584,13 +1645,21 @@ def create_ui():
for i, k, item in quicksettings_list:
component = component_dict[k]
+ info = opts.data_labels[k]
component.change(
fn=lambda value, k=k: run_settings_single(value, key=k),
inputs=[component],
outputs=[component, text_settings],
+ show_progress=info.refresh is not None,
)
+ text_settings.change(
+ fn=lambda: gr.update(visible=shared.sd_model and shared.sd_model.cond_stage_key == "edit"),
+ inputs=[],
+ outputs=[image_cfg_scale],
+ )
+
button_set_checkpoint = gr.Button('Change checkpoint', elem_id='change_checkpoint', visible=False)
button_set_checkpoint.click(
fn=lambda value, _: run_settings_single(value, key='sd_model_checkpoint'),
@@ -1608,6 +1677,7 @@ def create_ui():
fn=get_settings_values,
inputs=[],
outputs=[component_dict[k] for k in component_keys],
+ queue=False,
)
def modelmerger(*args):
@@ -1637,6 +1707,7 @@ def create_ui():
config_source,
bake_in_vae,
discard_weights,
+ save_metadata,
],
outputs=[
primary_model_name,
@@ -1684,7 +1755,7 @@ def create_ui():
if init_field is not None:
init_field(saved_value)
- if type(x) in [gr.Slider, gr.Radio, gr.Checkbox, gr.Textbox, gr.Number, gr.Dropdown] and x.visible:
+ if type(x) in [gr.Slider, gr.Radio, gr.Checkbox, gr.Textbox, gr.Number, gr.Dropdown, ToolButton] and x.visible:
apply_field(x, 'visible')
if type(x) == gr.Slider:
@@ -1714,12 +1785,27 @@ def create_ui():
apply_field(x, 'value', check_dropdown, getattr(x, 'init_field', None))
+ def check_tab_id(tab_id):
+ tab_items = list(filter(lambda e: isinstance(e, gr.TabItem), x.children))
+ if type(tab_id) == str:
+ tab_ids = [t.id for t in tab_items]
+ return tab_id in tab_ids
+ elif type(tab_id) == int:
+ return tab_id >= 0 and tab_id < len(tab_items)
+ else:
+ return False
+
+ if type(x) == gr.Tabs:
+ apply_field(x, 'selected', check_tab_id)
+
visit(txt2img_interface, loadsave, "txt2img")
visit(img2img_interface, loadsave, "img2img")
visit(extras_interface, loadsave, "extras")
visit(modelmerger_interface, loadsave, "modelmerger")
visit(train_interface, loadsave, "train")
+ loadsave(f"webui/Tabs@{tabs.elem_id}", tabs)
+
if not error_loading and (not os.path.exists(ui_config_file) or settings_count != len(ui_settings)):
with open(ui_config_file, "w", encoding="utf8") as file:
json.dump(ui_settings, file, indent=4)
@@ -1730,21 +1816,60 @@ def create_ui():
return demo
-def reload_javascript():
- head = f'<script type="text/javascript" src="file={os.path.abspath("script.js")}?{os.path.getmtime("script.js")}"></script>\n'
+def webpath(fn):
+ if fn.startswith(script_path):
+ web_path = os.path.relpath(fn, script_path).replace('\\', '/')
+ else:
+ web_path = os.path.abspath(fn)
+
+ return f'file={web_path}?{os.path.getmtime(fn)}'
+
+
+def javascript_html():
+ script_js = os.path.join(script_path, "script.js")
+ head = f'<script type="text/javascript" src="{webpath(script_js)}"></script>\n'
inline = f"{localization.localization_js(shared.opts.localization)};"
if cmd_opts.theme is not None:
inline += f"set_theme('{cmd_opts.theme}');"
for script in modules.scripts.list_scripts("javascript", ".js"):
- head += f'<script type="text/javascript" src="file={script.path}?{os.path.getmtime(script.path)}"></script>\n'
+ head += f'<script type="text/javascript" src="{webpath(script.path)}"></script>\n'
+
+ for script in modules.scripts.list_scripts("javascript", ".mjs"):
+ head += f'<script type="module" src="{webpath(script.path)}"></script>\n'
head += f'<script type="text/javascript">{inline}</script>\n'
+ return head
+
+
+def css_html():
+ head = ""
+
+ def stylesheet(fn):
+ return f'<link rel="stylesheet" property="stylesheet" href="{webpath(fn)}">'
+
+ for cssfile in modules.scripts.list_files_with_name("style.css"):
+ if not os.path.isfile(cssfile):
+ continue
+
+ head += stylesheet(cssfile)
+
+ if os.path.exists(os.path.join(data_path, "user.css")):
+ head += stylesheet(os.path.join(data_path, "user.css"))
+
+ return head
+
+
+def reload_javascript():
+ js = javascript_html()
+ css = css_html()
+
def template_response(*args, **kwargs):
res = shared.GradioTemplateResponseOriginal(*args, **kwargs)
- res.body = res.body.replace(b'</head>', f'{head}</head>'.encode("utf8"))
+ res.body = res.body.replace(b'</head>', f'{js}</head>'.encode("utf8"))
+ res.body = res.body.replace(b'</body>', f'{css}</body>'.encode("utf8"))
res.init_headers()
return res
@@ -1772,7 +1897,7 @@ def versions_html():
return f"""
python: <span title="{sys.version}">{python_version}</span>
 • 
-torch: {torch.__version__}
+torch: {getattr(torch, '__long_version__',torch.__version__)}
 • 
xformers: {xformers_version}
 • 
diff --git a/modules/ui_common.py b/modules/ui_common.py
index fd047f31..27ab3ebb 100644
--- a/modules/ui_common.py
+++ b/modules/ui_common.py
@@ -125,12 +125,12 @@ Requested path was: {f}
with gr.Column(variant='panel', elem_id=f"{tabname}_results"):
with gr.Group(elem_id=f"{tabname}_gallery_container"):
- result_gallery = gr.Gallery(label='Output', show_label=False, elem_id=f"{tabname}_gallery").style(grid=4)
+ result_gallery = gr.Gallery(label='Output', show_label=False, elem_id=f"{tabname}_gallery").style(columns=4)
generation_info = None
with gr.Column():
- with gr.Row(elem_id=f"image_buttons_{tabname}"):
- open_folder_button = gr.Button(folder_symbol, elem_id="hidden_element" if shared.cmd_opts.hide_ui_dir_config else f'open_folder_{tabname}')
+ with gr.Row(elem_id=f"image_buttons_{tabname}", elem_classes="image-buttons"):
+ open_folder_button = gr.Button(folder_symbol, visible=not shared.cmd_opts.hide_ui_dir_config)
if tabname != "extras":
save = gr.Button('Save', elem_id=f'save_{tabname}')
@@ -145,11 +145,10 @@ Requested path was: {f}
)
if tabname != "extras":
- with gr.Row():
- download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False, elem_id=f'download_files_{tabname}')
+ download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False, elem_id=f'download_files_{tabname}')
with gr.Group():
- html_info = gr.HTML(elem_id=f'html_info_{tabname}')
+ html_info = gr.HTML(elem_id=f'html_info_{tabname}', elem_classes="infotext")
html_log = gr.HTML(elem_id=f'html_log_{tabname}')
generation_info = gr.Textbox(visible=False, elem_id=f'generation_info_{tabname}')
@@ -160,6 +159,7 @@ Requested path was: {f}
_js="function(x, y, z){ return [x, y, selected_gallery_index()] }",
inputs=[generation_info, html_info, html_info],
outputs=[html_info, html_info],
+ show_progress=False,
)
save.click(
@@ -195,12 +195,19 @@ Requested path was: {f}
else:
html_info_x = gr.HTML(elem_id=f'html_info_x_{tabname}')
- html_info = gr.HTML(elem_id=f'html_info_{tabname}')
+ html_info = gr.HTML(elem_id=f'html_info_{tabname}', elem_classes="infotext")
html_log = gr.HTML(elem_id=f'html_log_{tabname}')
+ paste_field_names = []
+ if tabname == "txt2img":
+ paste_field_names = modules.scripts.scripts_txt2img.paste_field_names
+ elif tabname == "img2img":
+ paste_field_names = modules.scripts.scripts_img2img.paste_field_names
+
for paste_tabname, paste_button in buttons.items():
parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding(
- paste_button=paste_button, tabname=paste_tabname, source_tabname="txt2img" if tabname == "txt2img" else None, source_image_component=result_gallery
+ paste_button=paste_button, tabname=paste_tabname, source_tabname="txt2img" if tabname == "txt2img" else None, source_image_component=result_gallery,
+ paste_field_names=paste_field_names
))
return result_gallery, generation_info if tabname != "extras" else html_info_x, html_info, html_log
diff --git a/modules/ui_components.py b/modules/ui_components.py
index 284ca0cf..64451df7 100644
--- a/modules/ui_components.py
+++ b/modules/ui_components.py
@@ -1,58 +1,74 @@
import gradio as gr
-class ToolButton(gr.Button, gr.components.FormComponent):
- """Small button with single emoji as text, fits inside gradio forms"""
+class FormComponent:
+ def get_expected_parent(self):
+ return gr.components.Form
- def __init__(self, **kwargs):
- super().__init__(variant="tool", **kwargs)
- def get_block_name(self):
- return "button"
+gr.Dropdown.get_expected_parent = FormComponent.get_expected_parent
-class ToolButtonTop(gr.Button, gr.components.FormComponent):
- """Small button with single emoji as text, with extra margin at top, fits inside gradio forms"""
+class ToolButton(FormComponent, gr.Button):
+ """Small button with single emoji as text, fits inside gradio forms"""
- def __init__(self, **kwargs):
- super().__init__(variant="tool-top", **kwargs)
+ def __init__(self, *args, **kwargs):
+ classes = kwargs.pop("elem_classes", [])
+ super().__init__(*args, elem_classes=["tool", *classes], **kwargs)
def get_block_name(self):
return "button"
-class FormRow(gr.Row, gr.components.FormComponent):
+class FormRow(FormComponent, gr.Row):
"""Same as gr.Row but fits inside gradio forms"""
def get_block_name(self):
return "row"
-class FormGroup(gr.Group, gr.components.FormComponent):
+class FormColumn(FormComponent, gr.Column):
+ """Same as gr.Column but fits inside gradio forms"""
+
+ def get_block_name(self):
+ return "column"
+
+
+class FormGroup(FormComponent, gr.Group):
"""Same as gr.Row but fits inside gradio forms"""
def get_block_name(self):
return "group"
-class FormHTML(gr.HTML, gr.components.FormComponent):
+class FormHTML(FormComponent, gr.HTML):
"""Same as gr.HTML but fits inside gradio forms"""
def get_block_name(self):
return "html"
-class FormColorPicker(gr.ColorPicker, gr.components.FormComponent):
+class FormColorPicker(FormComponent, gr.ColorPicker):
"""Same as gr.ColorPicker but fits inside gradio forms"""
def get_block_name(self):
return "colorpicker"
-class DropdownMulti(gr.Dropdown):
+class DropdownMulti(FormComponent, gr.Dropdown):
"""Same as gr.Dropdown but always multiselect"""
def __init__(self, **kwargs):
super().__init__(multiselect=True, **kwargs)
def get_block_name(self):
return "dropdown"
+
+
+class DropdownEditable(FormComponent, gr.Dropdown):
+ """Same as gr.Dropdown but allows editing value"""
+ def __init__(self, **kwargs):
+ super().__init__(allow_custom_value=True, **kwargs)
+
+ def get_block_name(self):
+ return "dropdown"
+
diff --git a/modules/ui_extensions.py b/modules/ui_extensions.py
index 37d30e1f..99ac8756 100644
--- a/modules/ui_extensions.py
+++ b/modules/ui_extensions.py
@@ -1,8 +1,8 @@
import json
import os.path
-import shutil
import sys
import time
+from datetime import datetime
import traceback
import git
@@ -12,17 +12,19 @@ import html
import shutil
import errno
-from modules import extensions, shared, paths
+from modules import extensions, shared, paths, config_states
+from modules.paths_internal import config_states_dir
from modules.call_queue import wrap_gradio_gpu_call
available_extensions = {"extensions": []}
+STYLE_PRIMARY = ' style="color: var(--primary-400)"'
def check_access():
assert not shared.cmd_opts.disable_extension_access, "extension access disabled because of command line flags"
-def apply_and_restart(disable_list, update_list):
+def apply_and_restart(disable_list, update_list, disable_all):
check_access()
disabled = json.loads(disable_list)
@@ -31,6 +33,9 @@ def apply_and_restart(disable_list, update_list):
update = json.loads(update_list)
assert type(update) == list, f"wrong update_list data for apply_and_restart: {update_list}"
+ if update:
+ save_config_state("Backup (pre-update)")
+
update = set(update)
for ext in extensions.extensions:
@@ -44,12 +49,53 @@ def apply_and_restart(disable_list, update_list):
print(traceback.format_exc(), file=sys.stderr)
shared.opts.disabled_extensions = disabled
+ shared.opts.disable_all_extensions = disable_all
shared.opts.save(shared.config_filename)
shared.state.interrupt()
shared.state.need_restart = True
+def save_config_state(name):
+ current_config_state = config_states.get_config()
+ if not name:
+ name = "Config"
+ current_config_state["name"] = name
+ filename = os.path.join(config_states_dir, datetime.now().strftime("%Y_%m_%d-%H_%M_%S") + "_" + name + ".json")
+ print(f"Saving backup of webui/extension state to {filename}.")
+ with open(filename, "w", encoding="utf-8") as f:
+ json.dump(current_config_state, f)
+ config_states.list_config_states()
+ new_value = next(iter(config_states.all_config_states.keys()), "Current")
+ new_choices = ["Current"] + list(config_states.all_config_states.keys())
+ return gr.Dropdown.update(value=new_value, choices=new_choices), f"<span>Saved current webui/extension state to \"{filename}\"</span>"
+
+
+def restore_config_state(confirmed, config_state_name, restore_type):
+ if config_state_name == "Current":
+ return "<span>Select a config to restore from.</span>"
+ if not confirmed:
+ return "<span>Cancelled.</span>"
+
+ check_access()
+
+ config_state = config_states.all_config_states[config_state_name]
+
+ print(f"*** Restoring webui state from backup: {restore_type} ***")
+
+ if restore_type == "extensions" or restore_type == "both":
+ shared.opts.restore_config_state_file = config_state["filepath"]
+ shared.opts.save(shared.config_filename)
+
+ if restore_type == "webui" or restore_type == "both":
+ config_states.restore_webui_config(config_state)
+
+ shared.state.interrupt()
+ shared.state.need_restart = True
+
+ return ""
+
+
def check_updates(id_task, disable_list):
check_access()
@@ -64,6 +110,9 @@ def check_updates(id_task, disable_list):
try:
ext.check_updates()
+ except FileNotFoundError as e:
+ if 'FETCH_HEAD' not in str(e):
+ raise
except Exception:
print(f"Error checking updates for {ext.name}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
@@ -73,6 +122,16 @@ def check_updates(id_task, disable_list):
return extension_table(), ""
+def make_commit_link(commit_hash, remote, text=None):
+ if text is None:
+ text = commit_hash[:8]
+ if remote.startswith("https://github.com/"):
+ href = os.path.join(remote, "commit", commit_hash)
+ return f'<a href="{href}" target="_blank">{text}</a>'
+ else:
+ return text
+
+
def extension_table():
code = f"""<!-- {time.time()} -->
<table id="extensions">
@@ -80,6 +139,7 @@ def extension_table():
<tr>
<th><abbr title="Use checkbox to enable the extension; it will be enabled or disabled when you click apply button">Extension</abbr></th>
<th>URL</th>
+ <th><abbr title="Extension version">Version</abbr></th>
<th><abbr title="Use checkbox to mark the extension for update; it will be updated when you click apply button">Update</abbr></th>
</tr>
</thead>
@@ -87,21 +147,28 @@ def extension_table():
"""
for ext in extensions.extensions:
- remote = ""
- if ext.is_builtin:
- remote = "built-in"
- elif ext.remote:
- remote = f"""<a href="{html.escape(ext.remote or '')}" target="_blank">{html.escape("built-in" if ext.is_builtin else ext.remote or '')}</a>"""
+ ext.read_info_from_repo()
+
+ remote = f"""<a href="{html.escape(ext.remote or '')}" target="_blank">{html.escape("built-in" if ext.is_builtin else ext.remote or '')}</a>"""
if ext.can_update:
ext_status = f"""<label><input class="gr-check-radio gr-checkbox" name="update_{html.escape(ext.name)}" checked="checked" type="checkbox">{html.escape(ext.status)}</label>"""
else:
ext_status = ext.status
+ style = ""
+ if shared.opts.disable_all_extensions == "extra" and not ext.is_builtin or shared.opts.disable_all_extensions == "all":
+ style = STYLE_PRIMARY
+
+ version_link = ext.version
+ if ext.commit_hash and ext.remote:
+ version_link = make_commit_link(ext.commit_hash, ext.remote, ext.version)
+
code += f"""
<tr>
- <td><label><input class="gr-check-radio gr-checkbox" name="enable_{html.escape(ext.name)}" type="checkbox" {'checked="checked"' if ext.enabled else ''}>{html.escape(ext.name)}</label></td>
+ <td><label{style}><input class="gr-check-radio gr-checkbox" name="enable_{html.escape(ext.name)}" type="checkbox" {'checked="checked"' if ext.enabled else ''}>{html.escape(ext.name)}</label></td>
<td>{remote}</td>
+ <td>{version_link}</td>
<td{' class="extension_status"' if ext.remote is not None else ''}>{ext_status}</td>
</tr>
"""
@@ -114,6 +181,133 @@ def extension_table():
return code
+def update_config_states_table(state_name):
+ if state_name == "Current":
+ config_state = config_states.get_config()
+ else:
+ config_state = config_states.all_config_states[state_name]
+
+ config_name = config_state.get("name", "Config")
+ created_date = time.asctime(time.gmtime(config_state["created_at"]))
+ filepath = config_state.get("filepath", "<unknown>")
+
+ code = f"""<!-- {time.time()} -->"""
+
+ webui_remote = config_state["webui"]["remote"] or ""
+ webui_branch = config_state["webui"]["branch"]
+ webui_commit_hash = config_state["webui"]["commit_hash"] or "<unknown>"
+ webui_commit_date = config_state["webui"]["commit_date"]
+ if webui_commit_date:
+ webui_commit_date = time.asctime(time.gmtime(webui_commit_date))
+ else:
+ webui_commit_date = "<unknown>"
+
+ remote = f"""<a href="{html.escape(webui_remote)}" target="_blank">{html.escape(webui_remote or '')}</a>"""
+ commit_link = make_commit_link(webui_commit_hash, webui_remote)
+ date_link = make_commit_link(webui_commit_hash, webui_remote, webui_commit_date)
+
+ current_webui = config_states.get_webui_config()
+
+ style_remote = ""
+ style_branch = ""
+ style_commit = ""
+ if current_webui["remote"] != webui_remote:
+ style_remote = STYLE_PRIMARY
+ if current_webui["branch"] != webui_branch:
+ style_branch = STYLE_PRIMARY
+ if current_webui["commit_hash"] != webui_commit_hash:
+ style_commit = STYLE_PRIMARY
+
+ code += f"""<h2>Config Backup: {config_name}</h2>
+ <div><b>Filepath:</b> {filepath}</div>
+ <div><b>Created at:</b> {created_date}</div>"""
+
+ code += f"""<h2>WebUI State</h2>
+ <table id="config_state_webui">
+ <thead>
+ <tr>
+ <th>URL</th>
+ <th>Branch</th>
+ <th>Commit</th>
+ <th>Date</th>
+ </tr>
+ </thead>
+ <tbody>
+ <tr>
+ <td><label{style_remote}>{remote}</label></td>
+ <td><label{style_branch}>{webui_branch}</label></td>
+ <td><label{style_commit}>{commit_link}</label></td>
+ <td><label{style_commit}>{date_link}</label></td>
+ </tr>
+ </tbody>
+ </table>
+ """
+
+ code += """<h2>Extension State</h2>
+ <table id="config_state_extensions">
+ <thead>
+ <tr>
+ <th>Extension</th>
+ <th>URL</th>
+ <th>Branch</th>
+ <th>Commit</th>
+ <th>Date</th>
+ </tr>
+ </thead>
+ <tbody>
+ """
+
+ ext_map = {ext.name: ext for ext in extensions.extensions}
+
+ for ext_name, ext_conf in config_state["extensions"].items():
+ ext_remote = ext_conf["remote"] or ""
+ ext_branch = ext_conf["branch"] or "<unknown>"
+ ext_enabled = ext_conf["enabled"]
+ ext_commit_hash = ext_conf["commit_hash"] or "<unknown>"
+ ext_commit_date = ext_conf["commit_date"]
+ if ext_commit_date:
+ ext_commit_date = time.asctime(time.gmtime(ext_commit_date))
+ else:
+ ext_commit_date = "<unknown>"
+
+ remote = f"""<a href="{html.escape(ext_remote)}" target="_blank">{html.escape(ext_remote or '')}</a>"""
+ commit_link = make_commit_link(ext_commit_hash, ext_remote)
+ date_link = make_commit_link(ext_commit_hash, ext_remote, ext_commit_date)
+
+ style_enabled = ""
+ style_remote = ""
+ style_branch = ""
+ style_commit = ""
+ if ext_name in ext_map:
+ current_ext = ext_map[ext_name]
+ current_ext.read_info_from_repo()
+ if current_ext.enabled != ext_enabled:
+ style_enabled = STYLE_PRIMARY
+ if current_ext.remote != ext_remote:
+ style_remote = STYLE_PRIMARY
+ if current_ext.branch != ext_branch:
+ style_branch = STYLE_PRIMARY
+ if current_ext.commit_hash != ext_commit_hash:
+ style_commit = STYLE_PRIMARY
+
+ code += f"""
+ <tr>
+ <td><label{style_enabled}><input class="gr-check-radio gr-checkbox" type="checkbox" disabled="true" {'checked="checked"' if ext_enabled else ''}>{html.escape(ext_name)}</label></td>
+ <td><label{style_remote}>{remote}</label></td>
+ <td><label{style_branch}>{ext_branch}</label></td>
+ <td><label{style_commit}>{commit_link}</label></td>
+ <td><label{style_commit}>{date_link}</label></td>
+ </tr>
+ """
+
+ code += """
+ </tbody>
+ </table>
+ """
+
+ return code
+
+
def normalize_git_url(url):
if url is None:
return ""
@@ -122,7 +316,7 @@ def normalize_git_url(url):
return url
-def install_extension_from_url(dirname, url):
+def install_extension_from_url(dirname, url, branch_name=None):
check_access()
assert url, 'No URL specified'
@@ -143,22 +337,27 @@ def install_extension_from_url(dirname, url):
try:
shutil.rmtree(tmpdir, True)
-
- repo = git.Repo.clone_from(url, tmpdir)
- repo.remote().fetch()
-
+ if not branch_name:
+ # if no branch is specified, use the default branch
+ with git.Repo.clone_from(url, tmpdir) as repo:
+ repo.remote().fetch()
+ for submodule in repo.submodules:
+ submodule.update()
+ else:
+ with git.Repo.clone_from(url, tmpdir, branch=branch_name) as repo:
+ repo.remote().fetch()
+ for submodule in repo.submodules:
+ submodule.update()
try:
os.rename(tmpdir, target_dir)
except OSError as err:
- # TODO what does this do on windows? I think it'll be a different error code but I don't have a system to check it
- # Shouldn't cause any new issues at least but we probably want to handle it there too.
if err.errno == errno.EXDEV:
# Cross device link, typical in docker or when tmp/ and extensions/ are on different file systems
# Since we can't use a rename, do the slower but more versitile shutil.move()
shutil.move(tmpdir, target_dir)
else:
# Something else, not enough free space, permissions, etc. rethrow it so that it gets handled.
- raise(err)
+ raise err
import launch
launch.run_extension_installer(target_dir)
@@ -169,12 +368,12 @@ def install_extension_from_url(dirname, url):
shutil.rmtree(tmpdir, True)
-def install_extension_from_index(url, hide_tags, sort_column):
+def install_extension_from_index(url, hide_tags, sort_column, filter_text):
ext_table, message = install_extension_from_url(None, url)
- code, _ = refresh_available_extensions_from_data(hide_tags, sort_column)
+ code, _ = refresh_available_extensions_from_data(hide_tags, sort_column, filter_text)
- return code, ext_table, message
+ return code, ext_table, message, ''
def refresh_available_extensions(url, hide_tags, sort_column):
@@ -188,11 +387,17 @@ def refresh_available_extensions(url, hide_tags, sort_column):
code, tags = refresh_available_extensions_from_data(hide_tags, sort_column)
- return url, code, gr.CheckboxGroup.update(choices=tags), ''
+ return url, code, gr.CheckboxGroup.update(choices=tags), '', ''
-def refresh_available_extensions_for_tags(hide_tags, sort_column):
- code, _ = refresh_available_extensions_from_data(hide_tags, sort_column)
+def refresh_available_extensions_for_tags(hide_tags, sort_column, filter_text):
+ code, _ = refresh_available_extensions_from_data(hide_tags, sort_column, filter_text)
+
+ return code, ''
+
+
+def search_extensions(filter_text, hide_tags, sort_column):
+ code, _ = refresh_available_extensions_from_data(hide_tags, sort_column, filter_text)
return code, ''
@@ -207,7 +412,7 @@ sort_ordering = [
]
-def refresh_available_extensions_from_data(hide_tags, sort_column):
+def refresh_available_extensions_from_data(hide_tags, sort_column, filter_text=""):
extlist = available_extensions["extensions"]
installed_extension_urls = {normalize_git_url(extension.remote): extension.name for extension in extensions.extensions}
@@ -246,7 +451,12 @@ def refresh_available_extensions_from_data(hide_tags, sort_column):
hidden += 1
continue
- install_code = f"""<input onclick="install_extension_from_index(this, '{html.escape(url)}')" type="button" value="{"Install" if not existing else "Installed"}" {"disabled=disabled" if existing else ""} class="gr-button gr-button-lg gr-button-secondary">"""
+ if filter_text and filter_text.strip():
+ if filter_text.lower() not in html.escape(name).lower() and filter_text.lower() not in html.escape(description).lower():
+ hidden += 1
+ continue
+
+ install_code = f"""<button onclick="install_extension_from_index(this, '{html.escape(url)}')" {"disabled=disabled" if existing else ""} class="lg secondary gradio-button custom-button">{"Install" if not existing else "Installed"}</button>"""
tags_text = ", ".join([f"<span class='extension-tag' title='{tags.get(x, '')}'>{x}</span>" for x in extension_tags])
@@ -276,23 +486,33 @@ def refresh_available_extensions_from_data(hide_tags, sort_column):
def create_ui():
import modules.ui
+ config_states.list_config_states()
+
with gr.Blocks(analytics_enabled=False) as ui:
with gr.Tabs(elem_id="tabs_extensions") as tabs:
- with gr.TabItem("Installed"):
+ with gr.TabItem("Installed", id="installed"):
with gr.Row(elem_id="extensions_installed_top"):
apply = gr.Button(value="Apply and restart UI", variant="primary")
check = gr.Button(value="Check for updates")
+ extensions_disable_all = gr.Radio(label="Disable all extensions", choices=["none", "extra", "all"], value=shared.opts.disable_all_extensions, elem_id="extensions_disable_all")
extensions_disabled_list = gr.Text(elem_id="extensions_disabled_list", visible=False).style(container=False)
extensions_update_list = gr.Text(elem_id="extensions_update_list", visible=False).style(container=False)
- info = gr.HTML()
+ html = ""
+ if shared.opts.disable_all_extensions != "none":
+ html = """
+<span style="color: var(--primary-400);">
+ "Disable all extensions" was set, change it to "none" to load all extensions again
+</span>
+ """
+ info = gr.HTML(html)
extensions_table = gr.HTML(lambda: extension_table())
apply.click(
fn=apply_and_restart,
_js="extensions_apply",
- inputs=[extensions_disabled_list, extensions_update_list],
+ inputs=[extensions_disabled_list, extensions_update_list, extensions_disable_all],
outputs=[],
)
@@ -303,10 +523,10 @@ def create_ui():
outputs=[extensions_table, info],
)
- with gr.TabItem("Available"):
+ with gr.TabItem("Available", id="available"):
with gr.Row():
refresh_available_extensions_button = gr.Button(value="Load from:", variant="primary")
- available_extensions_index = gr.Text(value="https://raw.githubusercontent.com/wiki/AUTOMATIC1111/stable-diffusion-webui/Extensions-index.md", label="Extension index URL").style(container=False)
+ available_extensions_index = gr.Text(value="https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui-extensions/master/index.json", label="Extension index URL").style(container=False)
extension_to_install = gr.Text(elem_id="extension_to_install", visible=False)
install_extension_button = gr.Button(elem_id="install_extension_button", visible=False)
@@ -314,43 +534,77 @@ def create_ui():
hide_tags = gr.CheckboxGroup(value=["ads", "localization", "installed"], label="Hide extensions with tags", choices=["script", "ads", "localization", "installed"])
sort_column = gr.Radio(value="newest first", label="Order", choices=["newest first", "oldest first", "a-z", "z-a", "internal order", ], type="index")
+ with gr.Row():
+ search_extensions_text = gr.Text(label="Search").style(container=False)
+
install_result = gr.HTML()
available_extensions_table = gr.HTML()
refresh_available_extensions_button.click(
fn=modules.ui.wrap_gradio_call(refresh_available_extensions, extra_outputs=[gr.update(), gr.update(), gr.update()]),
inputs=[available_extensions_index, hide_tags, sort_column],
- outputs=[available_extensions_index, available_extensions_table, hide_tags, install_result],
+ outputs=[available_extensions_index, available_extensions_table, hide_tags, install_result, search_extensions_text],
)
install_extension_button.click(
fn=modules.ui.wrap_gradio_call(install_extension_from_index, extra_outputs=[gr.update(), gr.update()]),
- inputs=[extension_to_install, hide_tags, sort_column],
+ inputs=[extension_to_install, hide_tags, sort_column, search_extensions_text],
outputs=[available_extensions_table, extensions_table, install_result],
)
+ search_extensions_text.change(
+ fn=modules.ui.wrap_gradio_call(search_extensions, extra_outputs=[gr.update()]),
+ inputs=[search_extensions_text, hide_tags, sort_column],
+ outputs=[available_extensions_table, install_result],
+ )
+
hide_tags.change(
fn=modules.ui.wrap_gradio_call(refresh_available_extensions_for_tags, extra_outputs=[gr.update()]),
- inputs=[hide_tags, sort_column],
+ inputs=[hide_tags, sort_column, search_extensions_text],
outputs=[available_extensions_table, install_result]
)
sort_column.change(
fn=modules.ui.wrap_gradio_call(refresh_available_extensions_for_tags, extra_outputs=[gr.update()]),
- inputs=[hide_tags, sort_column],
+ inputs=[hide_tags, sort_column, search_extensions_text],
outputs=[available_extensions_table, install_result]
)
- with gr.TabItem("Install from URL"):
+ with gr.TabItem("Install from URL", id="install_from_url"):
install_url = gr.Text(label="URL for extension's git repository")
+ install_branch = gr.Text(label="Specific branch name", placeholder="Leave empty for default main branch")
install_dirname = gr.Text(label="Local directory name", placeholder="Leave empty for auto")
install_button = gr.Button(value="Install", variant="primary")
install_result = gr.HTML(elem_id="extension_install_result")
install_button.click(
fn=modules.ui.wrap_gradio_call(install_extension_from_url, extra_outputs=[gr.update()]),
- inputs=[install_dirname, install_url],
+ inputs=[install_dirname, install_url, install_branch],
outputs=[extensions_table, install_result],
)
+ with gr.TabItem("Backup/Restore"):
+ with gr.Row(elem_id="extensions_backup_top_row"):
+ config_states_list = gr.Dropdown(label="Saved Configs", elem_id="extension_backup_saved_configs", value="Current", choices=["Current"] + list(config_states.all_config_states.keys()))
+ modules.ui.create_refresh_button(config_states_list, config_states.list_config_states, lambda: {"choices": ["Current"] + list(config_states.all_config_states.keys())}, "refresh_config_states")
+ config_restore_type = gr.Radio(label="State to restore", choices=["extensions", "webui", "both"], value="extensions", elem_id="extension_backup_restore_type")
+ config_restore_button = gr.Button(value="Restore Selected Config", variant="primary", elem_id="extension_backup_restore")
+ with gr.Row(elem_id="extensions_backup_top_row2"):
+ config_save_name = gr.Textbox("", placeholder="Config Name", show_label=False)
+ config_save_button = gr.Button(value="Save Current Config")
+
+ config_states_info = gr.HTML("")
+ config_states_table = gr.HTML(lambda: update_config_states_table("Current"))
+
+ config_save_button.click(fn=save_config_state, inputs=[config_save_name], outputs=[config_states_list, config_states_info])
+
+ dummy_component = gr.Label(visible=False)
+ config_restore_button.click(fn=restore_config_state, _js="config_state_confirm_restore", inputs=[dummy_component, config_states_list, config_restore_type], outputs=[config_states_info])
+
+ config_states_list.change(
+ fn=update_config_states_table,
+ inputs=[config_states_list],
+ outputs=[config_states_table],
+ )
+
return ui
diff --git a/modules/ui_extra_networks.py b/modules/ui_extra_networks.py
index 83367968..aa2f5d1b 100644
--- a/modules/ui_extra_networks.py
+++ b/modules/ui_extra_networks.py
@@ -2,8 +2,10 @@ import glob
import os.path
import urllib.parse
from pathlib import Path
+from PIL import PngImagePlugin
from modules import shared
+from modules.images import read_info_from_image
import gradio as gr
import json
import html
@@ -22,20 +24,37 @@ def register_page(page):
allowed_dirs.update(set(sum([x.allowed_directories_for_previews() for x in extra_pages], [])))
-def add_pages_to_demo(app):
- def fetch_file(filename: str = ""):
- from starlette.responses import FileResponse
+def fetch_file(filename: str = ""):
+ from starlette.responses import FileResponse
+
+ if not any([Path(x).absolute() in Path(filename).absolute().parents for x in allowed_dirs]):
+ raise ValueError(f"File cannot be fetched: {filename}. Must be in one of directories registered by extra pages.")
+
+ ext = os.path.splitext(filename)[1].lower()
+ if ext not in (".png", ".jpg", ".webp"):
+ raise ValueError(f"File cannot be fetched: {filename}. Only png and jpg and webp.")
+
+ # would profit from returning 304
+ return FileResponse(filename, headers={"Accept-Ranges": "bytes"})
+
- if not any([Path(x).resolve() in Path(filename).resolve().parents for x in allowed_dirs]):
- raise ValueError(f"File cannot be fetched: {filename}. Must be in one of directories registered by extra pages.")
+def get_metadata(page: str = "", item: str = ""):
+ from starlette.responses import JSONResponse
- if os.path.splitext(filename)[1].lower() != ".png":
- raise ValueError(f"File cannot be fetched: {filename}. Only png.")
+ page = next(iter([x for x in extra_pages if x.name == page]), None)
+ if page is None:
+ return JSONResponse({})
- # would profit from returning 304
- return FileResponse(filename, headers={"Accept-Ranges": "bytes"})
+ metadata = page.metadata.get(item)
+ if metadata is None:
+ return JSONResponse({})
+ return JSONResponse({"metadata": metadata})
+
+
+def add_pages_to_demo(app):
app.add_api_route("/sd_extra_networks/thumb", fetch_file, methods=["GET"])
+ app.add_api_route("/sd_extra_networks/metadata", get_metadata, methods=["GET"])
class ExtraNetworksPage:
@@ -44,6 +63,7 @@ class ExtraNetworksPage:
self.name = title.lower()
self.card_page = shared.html("extra-networks-card.html")
self.allow_negative_prompt = False
+ self.metadata = {}
def refresh(self):
pass
@@ -65,6 +85,8 @@ class ExtraNetworksPage:
view = shared.opts.extra_networks_default_view
items_html = ''
+ self.metadata = {}
+
subdirs = {}
for parentdir in [os.path.abspath(x) for x in self.allowed_directories_for_previews()]:
for x in glob.glob(os.path.join(parentdir, '**/*'), recursive=True):
@@ -75,29 +97,39 @@ class ExtraNetworksPage:
while subdir.startswith("/"):
subdir = subdir[1:]
+ is_empty = len(os.listdir(x)) == 0
+ if not is_empty and not subdir.endswith("/"):
+ subdir = subdir + "/"
+
subdirs[subdir] = 1
if subdirs:
subdirs = {"": 1, **subdirs}
subdirs_html = "".join([f"""
-<button class='gr-button gr-button-lg gr-button-secondary{" search-all" if subdir=="" else ""}' onclick='extraNetworksSearchButton("{tabname}_extra_tabs", event)'>
+<button class='lg secondary gradio-button custom-button{" search-all" if subdir=="" else ""}' onclick='extraNetworksSearchButton("{tabname}_extra_tabs", event)'>
{html.escape(subdir if subdir!="" else "all")}
</button>
""" for subdir in subdirs])
for item in self.list_items():
+ metadata = item.get("metadata")
+ if metadata:
+ self.metadata[item["name"]] = metadata
+
items_html += self.create_html_for_item(item, tabname)
if items_html == '':
dirs = "".join([f"<li>{x}</li>" for x in self.allowed_directories_for_previews()])
items_html = shared.html("extra-networks-no-cards.html").format(dirs=dirs)
+ self_name_id = self.name.replace(" ", "_")
+
res = f"""
-<div id='{tabname}_{self.name}_subdirs' class='extra-network-subdirs extra-network-subdirs-{view}'>
+<div id='{tabname}_{self_name_id}_subdirs' class='extra-network-subdirs extra-network-subdirs-{view}'>
{subdirs_html}
</div>
-<div id='{tabname}_{self.name}_cards' class='extra-network-{view}'>
+<div id='{tabname}_{self_name_id}_cards' class='extra-network-{view}'>
{items_html}
</div>
"""
@@ -117,19 +149,58 @@ class ExtraNetworksPage:
if onclick is None:
onclick = '"' + html.escape(f"""return cardClicked({json.dumps(tabname)}, {item["prompt"]}, {"true" if self.allow_negative_prompt else "false"})""") + '"'
+ height = f"height: {shared.opts.extra_networks_card_height}px;" if shared.opts.extra_networks_card_height else ''
+ width = f"width: {shared.opts.extra_networks_card_width}px;" if shared.opts.extra_networks_card_width else ''
+ background_image = f"background-image: url(\"{html.escape(preview)}\");" if preview else ''
+ metadata_button = ""
+ metadata = item.get("metadata")
+ if metadata:
+ metadata_button = f"<div class='metadata-button' title='Show metadata' onclick='extraNetworksRequestMetadata(event, {json.dumps(self.name)}, {json.dumps(item['name'])})'></div>"
+
args = {
- "preview_html": "style='background-image: url(\"" + html.escape(preview) + "\")'" if preview else '',
+ "style": f"'{height}{width}{background_image}'",
"prompt": item.get("prompt", None),
"tabname": json.dumps(tabname),
"local_preview": json.dumps(item["local_preview"]),
"name": item["name"],
+ "description": (item.get("description") or ""),
"card_clicked": onclick,
"save_card_preview": '"' + html.escape(f"""return saveCardPreview(event, {json.dumps(tabname)}, {json.dumps(item["local_preview"])})""") + '"',
"search_term": item.get("search_term", ""),
+ "metadata_button": metadata_button,
}
return self.card_page.format(**args)
+ def find_preview(self, path):
+ """
+ Find a preview PNG for a given path (without extension) and call link_preview on it.
+ """
+
+ preview_extensions = ["png", "jpg", "webp"]
+ if shared.opts.samples_format not in preview_extensions:
+ preview_extensions.append(shared.opts.samples_format)
+
+ potential_files = sum([[path + "." + ext, path + ".preview." + ext] for ext in preview_extensions], [])
+
+ for file in potential_files:
+ if os.path.isfile(file):
+ return self.link_preview(file)
+
+ return None
+
+ def find_description(self, path):
+ """
+ Find and read a description file for a given path (without extension).
+ """
+ for file in [f"{path}.txt", f"{path}.description.txt"]:
+ try:
+ with open(file, "r", encoding="utf-8", errors="replace") as f:
+ return f.read()
+ except OSError:
+ pass
+ return None
+
def intialize():
extra_pages.clear()
@@ -170,24 +241,23 @@ def create_ui(container, button, tabname):
with gr.Tabs(elem_id=tabname+"_extra_tabs") as tabs:
for page in ui.stored_extra_pages:
- with gr.Tab(page.title):
+ with gr.Tab(page.title, id=page.title.lower().replace(" ", "_")):
+
page_elem = gr.HTML(page.create_html(ui.tabname))
ui.pages.append(page_elem)
filter = gr.Textbox('', show_label=False, elem_id=tabname+"_extra_search", placeholder="Search...", visible=False)
button_refresh = gr.Button('Refresh', elem_id=tabname+"_extra_refresh")
- button_close = gr.Button('Close', elem_id=tabname+"_extra_close")
ui.button_save_preview = gr.Button('Save preview', elem_id=tabname+"_save_preview", visible=False)
ui.preview_target_filename = gr.Textbox('Preview save filename', elem_id=tabname+"_preview_filename", visible=False)
def toggle_visibility(is_visible):
is_visible = not is_visible
- return is_visible, gr.update(visible=is_visible)
+ return is_visible, gr.update(visible=is_visible), gr.update(variant=("secondary-down" if is_visible else "secondary"))
state_visible = gr.State(value=False)
- button.click(fn=toggle_visibility, inputs=[state_visible], outputs=[state_visible, container])
- button_close.click(fn=toggle_visibility, inputs=[state_visible], outputs=[state_visible, container])
+ button.click(fn=toggle_visibility, inputs=[state_visible], outputs=[state_visible, container, button])
def refresh():
res = []
@@ -222,6 +292,7 @@ def setup_ui(ui, gallery):
img_info = images[index if index >= 0 else 0]
image = image_from_url_text(img_info)
+ geninfo, items = read_info_from_image(image)
is_allowed = False
for extra_page in ui.stored_extra_pages:
@@ -231,7 +302,12 @@ def setup_ui(ui, gallery):
assert is_allowed, f'writing to {filename} is not allowed'
- image.save(filename)
+ if geninfo:
+ pnginfo_data = PngImagePlugin.PngInfo()
+ pnginfo_data.add_text('parameters', geninfo)
+ image.save(filename, pnginfo=pnginfo_data)
+ else:
+ image.save(filename)
return [page.create_html(ui.tabname) for page in ui.stored_extra_pages]
diff --git a/modules/ui_extra_networks_checkpoints.py b/modules/ui_extra_networks_checkpoints.py
index 04097a79..a17aa9c9 100644
--- a/modules/ui_extra_networks_checkpoints.py
+++ b/modules/ui_extra_networks_checkpoints.py
@@ -1,7 +1,6 @@
import html
import json
import os
-import urllib.parse
from modules import shared, ui_extra_networks, sd_models
@@ -17,21 +16,14 @@ class ExtraNetworksPageCheckpoints(ui_extra_networks.ExtraNetworksPage):
checkpoint: sd_models.CheckpointInfo
for name, checkpoint in sd_models.checkpoints_list.items():
path, ext = os.path.splitext(checkpoint.filename)
- previews = [path + ".png", path + ".preview.png"]
-
- preview = None
- for file in previews:
- if os.path.isfile(file):
- preview = self.link_preview(file)
- break
-
yield {
"name": checkpoint.name_for_extra,
"filename": path,
- "preview": preview,
+ "preview": self.find_preview(path),
+ "description": self.find_description(path),
"search_term": self.search_terms_from_path(checkpoint.filename) + " " + (checkpoint.sha256 or ""),
"onclick": '"' + html.escape(f"""return selectCheckpoint({json.dumps(name)})""") + '"',
- "local_preview": path + ".png",
+ "local_preview": f"{path}.{shared.opts.samples_format}",
}
def allowed_directories_for_previews(self):
diff --git a/modules/ui_extra_networks_hypernets.py b/modules/ui_extra_networks_hypernets.py
index 57851088..6187e000 100644
--- a/modules/ui_extra_networks_hypernets.py
+++ b/modules/ui_extra_networks_hypernets.py
@@ -14,21 +14,15 @@ class ExtraNetworksPageHypernetworks(ui_extra_networks.ExtraNetworksPage):
def list_items(self):
for name, path in shared.hypernetworks.items():
path, ext = os.path.splitext(path)
- previews = [path + ".png", path + ".preview.png"]
-
- preview = None
- for file in previews:
- if os.path.isfile(file):
- preview = self.link_preview(file)
- break
yield {
"name": name,
"filename": path,
- "preview": preview,
+ "preview": self.find_preview(path),
+ "description": self.find_description(path),
"search_term": self.search_terms_from_path(path),
"prompt": json.dumps(f"<hypernet:{name}:") + " + opts.extra_networks_default_multiplier + " + json.dumps(">"),
- "local_preview": path + ".png",
+ "local_preview": f"{path}.preview.{shared.opts.samples_format}",
}
def allowed_directories_for_previews(self):
diff --git a/modules/ui_extra_networks_textual_inversion.py b/modules/ui_extra_networks_textual_inversion.py
index bb64eb81..6944d559 100644
--- a/modules/ui_extra_networks_textual_inversion.py
+++ b/modules/ui_extra_networks_textual_inversion.py
@@ -1,7 +1,7 @@
import json
import os
-from modules import ui_extra_networks, sd_hijack
+from modules import ui_extra_networks, sd_hijack, shared
class ExtraNetworksPageTextualInversion(ui_extra_networks.ExtraNetworksPage):
@@ -15,19 +15,14 @@ class ExtraNetworksPageTextualInversion(ui_extra_networks.ExtraNetworksPage):
def list_items(self):
for embedding in sd_hijack.model_hijack.embedding_db.word_embeddings.values():
path, ext = os.path.splitext(embedding.filename)
- preview_file = path + ".preview.png"
-
- preview = None
- if os.path.isfile(preview_file):
- preview = self.link_preview(preview_file)
-
yield {
"name": embedding.name,
"filename": embedding.filename,
- "preview": preview,
+ "preview": self.find_preview(path),
+ "description": self.find_description(path),
"search_term": self.search_terms_from_path(embedding.filename),
"prompt": json.dumps(embedding.name),
- "local_preview": path + ".preview.png",
+ "local_preview": f"{path}.preview.{shared.opts.samples_format}",
}
def allowed_directories_for_previews(self):
diff --git a/modules/ui_postprocessing.py b/modules/ui_postprocessing.py
index b418d955..f25639e5 100644
--- a/modules/ui_postprocessing.py
+++ b/modules/ui_postprocessing.py
@@ -9,13 +9,13 @@ def create_ui():
with gr.Row().style(equal_height=False, variant='compact'):
with gr.Column(variant='compact'):
with gr.Tabs(elem_id="mode_extras"):
- with gr.TabItem('Single Image', elem_id="extras_single_tab") as tab_single:
+ with gr.TabItem('Single Image', id="single_image", elem_id="extras_single_tab") as tab_single:
extras_image = gr.Image(label="Source", source="upload", interactive=True, type="pil", elem_id="extras_image")
- with gr.TabItem('Batch Process', elem_id="extras_batch_process_tab") as tab_batch:
- image_batch = gr.File(label="Batch Process", file_count="multiple", interactive=True, type="file", elem_id="extras_image_batch")
+ with gr.TabItem('Batch Process', id="batch_process", elem_id="extras_batch_process_tab") as tab_batch:
+ image_batch = gr.Files(label="Batch Process", interactive=True, elem_id="extras_image_batch")
- with gr.TabItem('Batch from Directory', elem_id="extras_batch_directory_tab") as tab_batch_dir:
+ with gr.TabItem('Batch from Directory', id="batch_from_directory", elem_id="extras_batch_directory_tab") as tab_batch_dir:
extras_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs, placeholder="A directory on the same machine where the server is running.", elem_id="extras_batch_input_dir")
extras_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, placeholder="Leave blank to save images to the default path.", elem_id="extras_batch_output_dir")
show_extras_results = gr.Checkbox(label='Show result images', value=True, elem_id="extras_show_extras_results")
diff --git a/requirements.txt b/requirements.txt
index 6d53f089..44e44608 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -1,11 +1,11 @@
+astunparse
blendmodes
accelerate
basicsr
fonts
font-roboto
gfpgan
-gradio==3.16.2
-invisible-watermark
+gradio==3.27
numpy
omegaconf
opencv-contrib-python
@@ -30,3 +30,4 @@ GitPython
torchsde
safetensors
psutil
+rich
diff --git a/requirements_versions.txt b/requirements_versions.txt
index eaa08806..94d32d3d 100644
--- a/requirements_versions.txt
+++ b/requirements_versions.txt
@@ -1,15 +1,15 @@
blendmodes==2022
transformers==4.25.1
-accelerate==0.12.0
+accelerate==0.18.0
basicsr==1.4.2
gfpgan==1.3.8
-gradio==3.16.2
-numpy==1.23.3
+gradio==3.27
+numpy==1.23.5
Pillow==9.4.0
realesrgan==0.3.0
torch
omegaconf==2.2.3
-pytorch_lightning==1.7.6
+pytorch_lightning==1.9.4
scikit-image==0.19.2
fonts
font-roboto
@@ -23,7 +23,8 @@ torchdiffeq==0.2.3
kornia==0.6.7
lark==1.1.2
inflection==0.5.1
-GitPython==3.1.27
+GitPython==3.1.30
torchsde==0.2.5
-safetensors==0.2.7
+safetensors==0.3.1
httpcore<=0.15
+fastapi==0.94.0
diff --git a/script.js b/script.js
index 97e0bfcf..03afe844 100644
--- a/script.js
+++ b/script.js
@@ -1,11 +1,13 @@
function gradioApp() {
const elems = document.getElementsByTagName('gradio-app')
- const gradioShadowRoot = elems.length == 0 ? null : elems[0].shadowRoot
- return !!gradioShadowRoot ? gradioShadowRoot : document;
+ const elem = elems.length == 0 ? document : elems[0]
+
+ if (elem !== document) elem.getElementById = function(id){ return document.getElementById(id) }
+ return elem.shadowRoot ? elem.shadowRoot : elem
}
function get_uiCurrentTab() {
- return gradioApp().querySelector('#tabs button:not(.border-transparent)')
+ return gradioApp().querySelector('#tabs button.selected')
}
function get_uiCurrentTabContent() {
diff --git a/scripts/custom_code.py b/scripts/custom_code.py
index d29113e6..4071d86d 100644
--- a/scripts/custom_code.py
+++ b/scripts/custom_code.py
@@ -1,9 +1,40 @@
import modules.scripts as scripts
import gradio as gr
+import ast
+import copy
from modules.processing import Processed
from modules.shared import opts, cmd_opts, state
+
+def convertExpr2Expression(expr):
+ expr.lineno = 0
+ expr.col_offset = 0
+ result = ast.Expression(expr.value, lineno=0, col_offset = 0)
+
+ return result
+
+
+def exec_with_return(code, module):
+ """
+ like exec() but can return values
+ https://stackoverflow.com/a/52361938/5862977
+ """
+ code_ast = ast.parse(code)
+
+ init_ast = copy.deepcopy(code_ast)
+ init_ast.body = code_ast.body[:-1]
+
+ last_ast = copy.deepcopy(code_ast)
+ last_ast.body = code_ast.body[-1:]
+
+ exec(compile(init_ast, "<ast>", "exec"), module.__dict__)
+ if type(last_ast.body[0]) == ast.Expr:
+ return eval(compile(convertExpr2Expression(last_ast.body[0]), "<ast>", "eval"), module.__dict__)
+ else:
+ exec(compile(last_ast, "<ast>", "exec"), module.__dict__)
+
+
class Script(scripts.Script):
def title(self):
@@ -13,12 +44,23 @@ class Script(scripts.Script):
return cmd_opts.allow_code
def ui(self, is_img2img):
- code = gr.Textbox(label="Python code", lines=1, elem_id=self.elem_id("code"))
+ example = """from modules.processing import process_images
+
+p.width = 768
+p.height = 768
+p.batch_size = 2
+p.steps = 10
+
+return process_images(p)
+"""
+
- return [code]
+ code = gr.Code(value=example, language="python", label="Python code", elem_id=self.elem_id("code"))
+ indent_level = gr.Number(label='Indent level', value=2, precision=0, elem_id=self.elem_id("indent_level"))
+ return [code, indent_level]
- def run(self, p, code):
+ def run(self, p, code, indent_level):
assert cmd_opts.allow_code, '--allow-code option must be enabled'
display_result_data = [[], -1, ""]
@@ -29,13 +71,20 @@ class Script(scripts.Script):
display_result_data[2] = i
from types import ModuleType
- compiled = compile(code, '', 'exec')
module = ModuleType("testmodule")
module.__dict__.update(globals())
module.p = p
module.display = display
- exec(compiled, module.__dict__)
+
+ indent = " " * indent_level
+ indented = code.replace('\n', '\n' + indent)
+ body = f"""def __webuitemp__():
+{indent}{indented}
+__webuitemp__()"""
+
+ result = exec_with_return(body, module)
+
+ if isinstance(result, Processed):
+ return result
return Processed(p, *display_result_data)
-
- \ No newline at end of file
diff --git a/scripts/img2imgalt.py b/scripts/img2imgalt.py
index cbdfc6b3..bb00fb3f 100644
--- a/scripts/img2imgalt.py
+++ b/scripts/img2imgalt.py
@@ -6,23 +6,21 @@ from tqdm import trange
import modules.scripts as scripts
import gradio as gr
-from modules import processing, shared, sd_samplers, prompt_parser
-from modules.processing import Processed
-from modules.shared import opts, cmd_opts, state
+from modules import processing, shared, sd_samplers, sd_samplers_common
import torch
import k_diffusion as K
-from PIL import Image
-from torch import autocast
-from einops import rearrange, repeat
-
-
def find_noise_for_image(p, cond, uncond, cfg_scale, steps):
x = p.init_latent
s_in = x.new_ones([x.shape[0]])
- dnw = K.external.CompVisDenoiser(shared.sd_model)
+ if shared.sd_model.parameterization == "v":
+ dnw = K.external.CompVisVDenoiser(shared.sd_model)
+ skip = 1
+ else:
+ dnw = K.external.CompVisDenoiser(shared.sd_model)
+ skip = 0
sigmas = dnw.get_sigmas(steps).flip(0)
shared.state.sampling_steps = steps
@@ -37,7 +35,7 @@ def find_noise_for_image(p, cond, uncond, cfg_scale, steps):
image_conditioning = torch.cat([p.image_conditioning] * 2)
cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]}
- c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)]
+ c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)[skip:]]
t = dnw.sigma_to_t(sigma_in)
eps = shared.sd_model.apply_model(x_in * c_in, t, cond=cond_in)
@@ -50,7 +48,7 @@ def find_noise_for_image(p, cond, uncond, cfg_scale, steps):
x = x + d * dt
- sd_samplers.store_latent(x)
+ sd_samplers_common.store_latent(x)
# This shouldn't be necessary, but solved some VRAM issues
del x_in, sigma_in, cond_in, c_out, c_in, t,
@@ -69,7 +67,12 @@ def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps):
x = p.init_latent
s_in = x.new_ones([x.shape[0]])
- dnw = K.external.CompVisDenoiser(shared.sd_model)
+ if shared.sd_model.parameterization == "v":
+ dnw = K.external.CompVisVDenoiser(shared.sd_model)
+ skip = 1
+ else:
+ dnw = K.external.CompVisDenoiser(shared.sd_model)
+ skip = 0
sigmas = dnw.get_sigmas(steps).flip(0)
shared.state.sampling_steps = steps
@@ -84,7 +87,7 @@ def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps):
image_conditioning = torch.cat([p.image_conditioning] * 2)
cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]}
- c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)]
+ c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)[skip:]]
if i == 1:
t = dnw.sigma_to_t(torch.cat([sigmas[i] * s_in] * 2))
@@ -104,7 +107,7 @@ def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps):
dt = sigmas[i] - sigmas[i - 1]
x = x + d * dt
- sd_samplers.store_latent(x)
+ sd_samplers_common.store_latent(x)
# This shouldn't be necessary, but solved some VRAM issues
del x_in, sigma_in, cond_in, c_out, c_in, t,
@@ -125,7 +128,7 @@ class Script(scripts.Script):
def show(self, is_img2img):
return is_img2img
- def ui(self, is_img2img):
+ def ui(self, is_img2img):
info = gr.Markdown('''
* `CFG Scale` should be 2 or lower.
''')
@@ -213,4 +216,3 @@ class Script(scripts.Script):
processed = processing.process_images(p)
return processed
-
diff --git a/scripts/loopback.py b/scripts/loopback.py
index 1dab9476..d3065fe6 100644
--- a/scripts/loopback.py
+++ b/scripts/loopback.py
@@ -1,13 +1,10 @@
-import numpy as np
-from tqdm import trange
+import math
-import modules.scripts as scripts
import gradio as gr
-
-from modules import processing, shared, sd_samplers, images
+import modules.scripts as scripts
+from modules import deepbooru, images, processing, shared
from modules.processing import Processed
-from modules.sd_samplers import samplers
-from modules.shared import opts, cmd_opts, state
+from modules.shared import opts, state
class Script(scripts.Script):
@@ -19,37 +16,65 @@ class Script(scripts.Script):
def ui(self, is_img2img):
loops = gr.Slider(minimum=1, maximum=32, step=1, label='Loops', value=4, elem_id=self.elem_id("loops"))
- denoising_strength_change_factor = gr.Slider(minimum=0.9, maximum=1.1, step=0.01, label='Denoising strength change factor', value=1, elem_id=self.elem_id("denoising_strength_change_factor"))
+ final_denoising_strength = gr.Slider(minimum=0, maximum=1, step=0.01, label='Final denoising strength', value=0.5, elem_id=self.elem_id("final_denoising_strength"))
+ denoising_curve = gr.Dropdown(label="Denoising strength curve", choices=["Aggressive", "Linear", "Lazy"], value="Linear")
+ append_interrogation = gr.Dropdown(label="Append interrogated prompt at each iteration", choices=["None", "CLIP", "DeepBooru"], value="None")
- return [loops, denoising_strength_change_factor]
+ return [loops, final_denoising_strength, denoising_curve, append_interrogation]
- def run(self, p, loops, denoising_strength_change_factor):
+ def run(self, p, loops, final_denoising_strength, denoising_curve, append_interrogation):
processing.fix_seed(p)
batch_count = p.n_iter
p.extra_generation_params = {
- "Denoising strength change factor": denoising_strength_change_factor,
+ "Final denoising strength": final_denoising_strength,
+ "Denoising curve": denoising_curve
}
p.batch_size = 1
p.n_iter = 1
- output_images, info = None, None
+ info = None
initial_seed = None
initial_info = None
+ initial_denoising_strength = p.denoising_strength
grids = []
all_images = []
original_init_image = p.init_images
+ original_prompt = p.prompt
+ original_inpainting_fill = p.inpainting_fill
state.job_count = loops * batch_count
initial_color_corrections = [processing.setup_color_correction(p.init_images[0])]
- for n in range(batch_count):
- history = []
+ def calculate_denoising_strength(loop):
+ strength = initial_denoising_strength
+
+ if loops == 1:
+ return strength
+ progress = loop / (loops - 1)
+ if denoising_curve == "Aggressive":
+ strength = math.sin((progress) * math.pi * 0.5)
+ elif denoising_curve == "Lazy":
+ strength = 1 - math.cos((progress) * math.pi * 0.5)
+ else:
+ strength = progress
+
+ change = (final_denoising_strength - initial_denoising_strength) * strength
+ return initial_denoising_strength + change
+
+ history = []
+
+ for n in range(batch_count):
# Reset to original init image at the start of each batch
p.init_images = original_init_image
+ # Reset to original denoising strength
+ p.denoising_strength = initial_denoising_strength
+
+ last_image = None
+
for i in range(loops):
p.n_iter = 1
p.batch_size = 1
@@ -58,30 +83,57 @@ class Script(scripts.Script):
if opts.img2img_color_correction:
p.color_corrections = initial_color_corrections
+ if append_interrogation != "None":
+ p.prompt = original_prompt + ", " if original_prompt != "" else ""
+ if append_interrogation == "CLIP":
+ p.prompt += shared.interrogator.interrogate(p.init_images[0])
+ elif append_interrogation == "DeepBooru":
+ p.prompt += deepbooru.model.tag(p.init_images[0])
+
state.job = f"Iteration {i + 1}/{loops}, batch {n + 1}/{batch_count}"
processed = processing.process_images(p)
+ # Generation cancelled.
+ if state.interrupted:
+ break
+
if initial_seed is None:
initial_seed = processed.seed
initial_info = processed.info
- init_img = processed.images[0]
-
- p.init_images = [init_img]
p.seed = processed.seed + 1
- p.denoising_strength = min(max(p.denoising_strength * denoising_strength_change_factor, 0.1), 1)
- history.append(processed.images[0])
+ p.denoising_strength = calculate_denoising_strength(i + 1)
+
+ if state.skipped:
+ break
+
+ last_image = processed.images[0]
+ p.init_images = [last_image]
+ p.inpainting_fill = 1 # Set "masked content" to "original" for next loop.
+ if batch_count == 1:
+ history.append(last_image)
+ all_images.append(last_image)
+
+ if batch_count > 1 and not state.skipped and not state.interrupted:
+ history.append(last_image)
+ all_images.append(last_image)
+
+ p.inpainting_fill = original_inpainting_fill
+
+ if state.interrupted:
+ break
+
+ if len(history) > 1:
grid = images.image_grid(history, rows=1)
if opts.grid_save:
images.save_image(grid, p.outpath_grids, "grid", initial_seed, p.prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename, grid=True, p=p)
- grids.append(grid)
- all_images += history
-
- if opts.return_grid:
- all_images = grids + all_images
+ if opts.return_grid:
+ grids.append(grid)
+
+ all_images = grids + all_images
processed = Processed(p, all_images, initial_seed, initial_info)
diff --git a/scripts/outpainting_mk_2.py b/scripts/outpainting_mk_2.py
index 0906da6a..670bb8ac 100644
--- a/scripts/outpainting_mk_2.py
+++ b/scripts/outpainting_mk_2.py
@@ -275,7 +275,7 @@ class Script(scripts.Script):
if opts.samples_save:
for img in all_processed_images:
- images.save_image(img, p.outpath_samples, "", res.seed, p.prompt, opts.grid_format, info=res.info, p=p)
+ images.save_image(img, p.outpath_samples, "", res.seed, p.prompt, opts.samples_format, info=res.info, p=p)
if opts.grid_save and not unwanted_grid_because_of_img_count:
images.save_image(combined_grid_image, p.outpath_grids, "grid", res.seed, p.prompt, opts.grid_format, info=res.info, short_filename=not opts.grid_extended_filename, grid=True, p=p)
diff --git a/scripts/poor_mans_outpainting.py b/scripts/poor_mans_outpainting.py
index d8feda00..ddcbd2d3 100644
--- a/scripts/poor_mans_outpainting.py
+++ b/scripts/poor_mans_outpainting.py
@@ -138,7 +138,7 @@ class Script(scripts.Script):
combined_image = images.combine_grid(grid)
if opts.samples_save:
- images.save_image(combined_image, p.outpath_samples, "", initial_seed, p.prompt, opts.grid_format, info=initial_info, p=p)
+ images.save_image(combined_image, p.outpath_samples, "", initial_seed, p.prompt, opts.samples_format, info=initial_info, p=p)
processed = Processed(p, [combined_image], initial_seed, initial_info)
diff --git a/scripts/postprocessing_upscale.py b/scripts/postprocessing_upscale.py
index 8842bd91..ef1186ac 100644
--- a/scripts/postprocessing_upscale.py
+++ b/scripts/postprocessing_upscale.py
@@ -4,8 +4,8 @@ import numpy as np
from modules import scripts_postprocessing, shared
import gradio as gr
-from modules.ui_components import FormRow
-
+from modules.ui_components import FormRow, ToolButton
+from modules.ui import switch_values_symbol
upscale_cache = {}
@@ -17,23 +17,29 @@ class ScriptPostprocessingUpscale(scripts_postprocessing.ScriptPostprocessing):
def ui(self):
selected_tab = gr.State(value=0)
- with gr.Tabs(elem_id="extras_resize_mode"):
- with gr.TabItem('Scale by', elem_id="extras_scale_by_tab") as tab_scale_by:
- upscaling_resize = gr.Slider(minimum=1.0, maximum=8.0, step=0.05, label="Resize", value=4, elem_id="extras_upscaling_resize")
-
- with gr.TabItem('Scale to', elem_id="extras_scale_to_tab") as tab_scale_to:
- with FormRow():
- upscaling_resize_w = gr.Number(label="Width", value=512, precision=0, elem_id="extras_upscaling_resize_w")
- upscaling_resize_h = gr.Number(label="Height", value=512, precision=0, elem_id="extras_upscaling_resize_h")
- upscaling_crop = gr.Checkbox(label='Crop to fit', value=True, elem_id="extras_upscaling_crop")
-
- with FormRow():
- extras_upscaler_1 = gr.Dropdown(label='Upscaler 1', elem_id="extras_upscaler_1", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name)
-
- with FormRow():
- extras_upscaler_2 = gr.Dropdown(label='Upscaler 2', elem_id="extras_upscaler_2", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name)
- extras_upscaler_2_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Upscaler 2 visibility", value=0.0, elem_id="extras_upscaler_2_visibility")
-
+ with gr.Column():
+ with FormRow():
+ with gr.Tabs(elem_id="extras_resize_mode"):
+ with gr.TabItem('Scale by', elem_id="extras_scale_by_tab") as tab_scale_by:
+ upscaling_resize = gr.Slider(minimum=1.0, maximum=8.0, step=0.05, label="Resize", value=4, elem_id="extras_upscaling_resize")
+
+ with gr.TabItem('Scale to', elem_id="extras_scale_to_tab") as tab_scale_to:
+ with FormRow():
+ with gr.Column(elem_id="upscaling_column_size", scale=4):
+ upscaling_resize_w = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="extras_upscaling_resize_w")
+ upscaling_resize_h = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="extras_upscaling_resize_h")
+ with gr.Column(elem_id="upscaling_dimensions_row", scale=1, elem_classes="dimensions-tools"):
+ upscaling_res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="upscaling_res_switch_btn")
+ upscaling_crop = gr.Checkbox(label='Crop to fit', value=True, elem_id="extras_upscaling_crop")
+
+ with FormRow():
+ extras_upscaler_1 = gr.Dropdown(label='Upscaler 1', elem_id="extras_upscaler_1", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name)
+
+ with FormRow():
+ extras_upscaler_2 = gr.Dropdown(label='Upscaler 2', elem_id="extras_upscaler_2", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name)
+ extras_upscaler_2_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Upscaler 2 visibility", value=0.0, elem_id="extras_upscaler_2_visibility")
+
+ upscaling_res_switch_btn.click(lambda w, h: (h, w), inputs=[upscaling_resize_w, upscaling_resize_h], outputs=[upscaling_resize_w, upscaling_resize_h], show_progress=False)
tab_scale_by.select(fn=lambda: 0, inputs=[], outputs=[selected_tab])
tab_scale_to.select(fn=lambda: 1, inputs=[], outputs=[selected_tab])
diff --git a/scripts/prompt_matrix.py b/scripts/prompt_matrix.py
index de921ea8..e9b11517 100644
--- a/scripts/prompt_matrix.py
+++ b/scripts/prompt_matrix.py
@@ -48,23 +48,17 @@ class Script(scripts.Script):
gr.HTML('<br />')
with gr.Row():
with gr.Column():
- put_at_start = gr.Checkbox(label='Put variable parts at start of prompt',
- value=False, elem_id=self.elem_id("put_at_start"))
+ put_at_start = gr.Checkbox(label='Put variable parts at start of prompt', value=False, elem_id=self.elem_id("put_at_start"))
+ different_seeds = gr.Checkbox(label='Use different seed for each picture', value=False, elem_id=self.elem_id("different_seeds"))
with gr.Column():
- # Radio buttons for selecting the prompt between positive and negative
- prompt_type = gr.Radio(["positive", "negative"], label="Select prompt",
- elem_id=self.elem_id("prompt_type"), value="positive")
- with gr.Row():
- with gr.Column():
- different_seeds = gr.Checkbox(
- label='Use different seed for each picture', value=False, elem_id=self.elem_id("different_seeds"))
+ prompt_type = gr.Radio(["positive", "negative"], label="Select prompt", elem_id=self.elem_id("prompt_type"), value="positive")
+ variations_delimiter = gr.Radio(["comma", "space"], label="Select joining char", elem_id=self.elem_id("variations_delimiter"), value="comma")
with gr.Column():
- # Radio buttons for selecting the delimiter to use in the resulting prompt
- variations_delimiter = gr.Radio(["comma", "space"], label="Select delimiter", elem_id=self.elem_id(
- "variations_delimiter"), value="comma")
- return [put_at_start, different_seeds, prompt_type, variations_delimiter]
+ margin_size = gr.Slider(label="Grid margins (px)", minimum=0, maximum=500, value=0, step=2, elem_id=self.elem_id("margin_size"))
+
+ return [put_at_start, different_seeds, prompt_type, variations_delimiter, margin_size]
- def run(self, p, put_at_start, different_seeds, prompt_type, variations_delimiter):
+ def run(self, p, put_at_start, different_seeds, prompt_type, variations_delimiter, margin_size):
modules.processing.fix_seed(p)
# Raise error if promp type is not positive or negative
if prompt_type not in ["positive", "negative"]:
@@ -105,8 +99,8 @@ class Script(scripts.Script):
p.prompt_for_display = positive_prompt
processed = process_images(p)
- grid = images.image_grid(processed.images, p.batch_size, rows=1 << ((len(prompt_matrix_parts) - 1) // 2))
- grid = images.draw_prompt_matrix(grid, p.width, p.height, prompt_matrix_parts)
+ grid = images.image_grid(processed.images, p.batch_size, rows=1 << ((len(prompt_matrix_parts) - 1) // 2))
+ grid = images.draw_prompt_matrix(grid, processed.images[0].width, processed.images[0].height, prompt_matrix_parts, margin_size)
processed.images.insert(0, grid)
processed.index_of_first_image = 1
processed.infotexts.insert(0, processed.infotexts[0])
diff --git a/scripts/xyz_grid.py b/scripts/xyz_grid.py
index 3122f6f6..398065d9 100644
--- a/scripts/xyz_grid.py
+++ b/scripts/xyz_grid.py
@@ -25,6 +25,8 @@ from modules.ui_components import ToolButton
fill_values_symbol = "\U0001f4d2" # 📒
+AxisInfo = namedtuple('AxisInfo', ['axis', 'values'])
+
def apply_field(field):
def fun(p, x, xs):
@@ -126,6 +128,24 @@ def apply_styles(p: StableDiffusionProcessingTxt2Img, x: str, _):
p.styles.extend(x.split(','))
+def apply_uni_pc_order(p, x, xs):
+ opts.data["uni_pc_order"] = min(x, p.steps - 1)
+
+
+def apply_face_restore(p, opt, x):
+ opt = opt.lower()
+ if opt == 'codeformer':
+ is_active = True
+ p.face_restoration_model = 'CodeFormer'
+ elif opt == 'gfpgan':
+ is_active = True
+ p.face_restoration_model = 'GFPGAN'
+ else:
+ is_active = opt in ('true', 'yes', 'y', '1')
+
+ p.restore_faces = is_active
+
+
def format_value_add_label(p, opt, x):
if type(x) == float:
x = round(x, 8)
@@ -186,11 +206,13 @@ axis_options = [
AxisOption("Steps", int, apply_field("steps")),
AxisOptionTxt2Img("Hires steps", int, apply_field("hr_second_pass_steps")),
AxisOption("CFG Scale", float, apply_field("cfg_scale")),
+ AxisOptionImg2Img("Image CFG Scale", float, apply_field("image_cfg_scale")),
AxisOption("Prompt S/R", str, apply_prompt, format_value=format_value),
AxisOption("Prompt order", str_permutations, apply_order, format_value=format_value_join_list),
AxisOptionTxt2Img("Sampler", str, apply_sampler, format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers]),
AxisOptionImg2Img("Sampler", str, apply_sampler, format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers_for_img2img]),
- AxisOption("Checkpoint name", str, apply_checkpoint, format_value=format_value, confirm=confirm_checkpoints, cost=1.0, choices=lambda: list(sd_models.checkpoints_list)),
+ AxisOption("Checkpoint name", str, apply_checkpoint, format_value=format_value, confirm=confirm_checkpoints, cost=1.0, choices=lambda: sorted(sd_models.checkpoints_list, key=str.casefold)),
+ AxisOption("Negative Guidance minimum sigma", float, apply_field("s_min_uncond")),
AxisOption("Sigma Churn", float, apply_field("s_churn")),
AxisOption("Sigma min", float, apply_field("s_tmin")),
AxisOption("Sigma max", float, apply_field("s_tmax")),
@@ -202,54 +224,57 @@ axis_options = [
AxisOptionImg2Img("Cond. Image Mask Weight", float, apply_field("inpainting_mask_weight")),
AxisOption("VAE", str, apply_vae, cost=0.7, choices=lambda: list(sd_vae.vae_dict)),
AxisOption("Styles", str, apply_styles, choices=lambda: list(shared.prompt_styles.styles)),
+ AxisOption("UniPC Order", int, apply_uni_pc_order, cost=0.5),
+ AxisOption("Face restore", str, apply_face_restore, format_value=format_value),
]
-def draw_xyz_grid(p, xs, ys, zs, x_labels, y_labels, z_labels, cell, draw_legend, include_lone_images, include_sub_grids, first_axes_processed, second_axes_processed):
+def draw_xyz_grid(p, xs, ys, zs, x_labels, y_labels, z_labels, cell, draw_legend, include_lone_images, include_sub_grids, first_axes_processed, second_axes_processed, margin_size):
hor_texts = [[images.GridAnnotation(x)] for x in x_labels]
ver_texts = [[images.GridAnnotation(y)] for y in y_labels]
title_texts = [[images.GridAnnotation(z)] for z in z_labels]
- # Temporary list of all the images that are generated to be populated into the grid.
- # Will be filled with empty images for any individual step that fails to process properly
- image_cache = [None] * (len(xs) * len(ys) * len(zs))
+ list_size = (len(xs) * len(ys) * len(zs))
processed_result = None
- cell_mode = "P"
- cell_size = (1, 1)
- state.job_count = len(xs) * len(ys) * len(zs) * p.n_iter
+ state.job_count = list_size * p.n_iter
def process_cell(x, y, z, ix, iy, iz):
- nonlocal image_cache, processed_result, cell_mode, cell_size
+ nonlocal processed_result
def index(ix, iy, iz):
return ix + iy * len(xs) + iz * len(xs) * len(ys)
- state.job = f"{index(ix, iy, iz) + 1} out of {len(xs) * len(ys) * len(zs)}"
-
- processed: Processed = cell(x, y, z)
-
- try:
- # this dereference will throw an exception if the image was not processed
- # (this happens in cases such as if the user stops the process from the UI)
- processed_image = processed.images[0]
-
- if processed_result is None:
- # Use our first valid processed result as a template container to hold our full results
- processed_result = copy(processed)
- cell_mode = processed_image.mode
- cell_size = processed_image.size
- processed_result.images = [Image.new(cell_mode, cell_size)]
+ state.job = f"{index(ix, iy, iz) + 1} out of {list_size}"
+
+ processed: Processed = cell(x, y, z, ix, iy, iz)
+
+ if processed_result is None:
+ # Use our first processed result object as a template container to hold our full results
+ processed_result = copy(processed)
+ processed_result.images = [None] * list_size
+ processed_result.all_prompts = [None] * list_size
+ processed_result.all_seeds = [None] * list_size
+ processed_result.infotexts = [None] * list_size
+ processed_result.index_of_first_image = 1
+
+ idx = index(ix, iy, iz)
+ if processed.images:
+ # Non-empty list indicates some degree of success.
+ processed_result.images[idx] = processed.images[0]
+ processed_result.all_prompts[idx] = processed.prompt
+ processed_result.all_seeds[idx] = processed.seed
+ processed_result.infotexts[idx] = processed.infotexts[0]
+ else:
+ cell_mode = "P"
+ cell_size = (processed_result.width, processed_result.height)
+ if processed_result.images[0] is not None:
+ cell_mode = processed_result.images[0].mode
+ #This corrects size in case of batches:
+ cell_size = processed_result.images[0].size
+ processed_result.images[idx] = Image.new(cell_mode, cell_size)
- image_cache[index(ix, iy, iz)] = processed_image
- if include_lone_images:
- processed_result.images.append(processed_image)
- processed_result.all_prompts.append(processed.prompt)
- processed_result.all_seeds.append(processed.seed)
- processed_result.infotexts.append(processed.infotexts[0])
- except:
- image_cache[index(ix, iy, iz)] = Image.new(cell_mode, cell_size)
if first_axes_processed == 'x':
for ix, x in enumerate(xs):
@@ -283,36 +308,48 @@ def draw_xyz_grid(p, xs, ys, zs, x_labels, y_labels, z_labels, cell, draw_legend
process_cell(x, y, z, ix, iy, iz)
if not processed_result:
+ # Should never happen, I've only seen it on one of four open tabs and it needed to refresh.
+ print("Unexpected error: Processing could not begin, you may need to refresh the tab or restart the service.")
+ return Processed(p, [])
+ elif not any(processed_result.images):
print("Unexpected error: draw_xyz_grid failed to return even a single processed image")
return Processed(p, [])
- sub_grids = [None] * len(zs)
- for i in range(len(zs)):
- start_index = i * len(xs) * len(ys)
+ z_count = len(zs)
+ sub_grids = [None] * z_count
+ for i in range(z_count):
+ start_index = (i * len(xs) * len(ys)) + i
end_index = start_index + len(xs) * len(ys)
- grid = images.image_grid(image_cache[start_index:end_index], rows=len(ys))
+ grid = images.image_grid(processed_result.images[start_index:end_index], rows=len(ys))
if draw_legend:
- grid = images.draw_grid_annotations(grid, cell_size[0], cell_size[1], hor_texts, ver_texts)
- sub_grids[i] = grid
- if include_sub_grids and len(zs) > 1:
- processed_result.images.insert(i+1, grid)
-
- sub_grid_size = sub_grids[0].size
- z_grid = images.image_grid(sub_grids, rows=1)
+ grid = images.draw_grid_annotations(grid, processed_result.images[start_index].size[0], processed_result.images[start_index].size[1], hor_texts, ver_texts, margin_size)
+ processed_result.images.insert(i, grid)
+ processed_result.all_prompts.insert(i, processed_result.all_prompts[start_index])
+ processed_result.all_seeds.insert(i, processed_result.all_seeds[start_index])
+ processed_result.infotexts.insert(i, processed_result.infotexts[start_index])
+
+ sub_grid_size = processed_result.images[0].size
+ z_grid = images.image_grid(processed_result.images[:z_count], rows=1)
if draw_legend:
z_grid = images.draw_grid_annotations(z_grid, sub_grid_size[0], sub_grid_size[1], title_texts, [[images.GridAnnotation()]])
- processed_result.images[0] = z_grid
+ processed_result.images.insert(0, z_grid)
+ #TODO: Deeper aspects of the program rely on grid info being misaligned between metadata arrays, which is not ideal.
+ #processed_result.all_prompts.insert(0, processed_result.all_prompts[0])
+ #processed_result.all_seeds.insert(0, processed_result.all_seeds[0])
+ processed_result.infotexts.insert(0, processed_result.infotexts[0])
- return processed_result, sub_grids
+ return processed_result
class SharedSettingsStackHelper(object):
def __enter__(self):
self.CLIP_stop_at_last_layers = opts.CLIP_stop_at_last_layers
self.vae = opts.sd_vae
+ self.uni_pc_order = opts.uni_pc_order
def __exit__(self, exc_type, exc_value, tb):
opts.data["sd_vae"] = self.vae
+ opts.data["uni_pc_order"] = self.uni_pc_order
modules.sd_models.reload_model_weights()
modules.sd_vae.reload_vae_weights()
@@ -338,75 +375,104 @@ class Script(scripts.Script):
with gr.Row():
x_type = gr.Dropdown(label="X type", choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[1].label, type="index", elem_id=self.elem_id("x_type"))
x_values = gr.Textbox(label="X values", lines=1, elem_id=self.elem_id("x_values"))
+ x_values_dropdown = gr.Dropdown(label="X values",visible=False,multiselect=True,interactive=True)
fill_x_button = ToolButton(value=fill_values_symbol, elem_id="xyz_grid_fill_x_tool_button", visible=False)
with gr.Row():
y_type = gr.Dropdown(label="Y type", choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[0].label, type="index", elem_id=self.elem_id("y_type"))
y_values = gr.Textbox(label="Y values", lines=1, elem_id=self.elem_id("y_values"))
+ y_values_dropdown = gr.Dropdown(label="Y values",visible=False,multiselect=True,interactive=True)
fill_y_button = ToolButton(value=fill_values_symbol, elem_id="xyz_grid_fill_y_tool_button", visible=False)
with gr.Row():
z_type = gr.Dropdown(label="Z type", choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[0].label, type="index", elem_id=self.elem_id("z_type"))
z_values = gr.Textbox(label="Z values", lines=1, elem_id=self.elem_id("z_values"))
+ z_values_dropdown = gr.Dropdown(label="Z values",visible=False,multiselect=True,interactive=True)
fill_z_button = ToolButton(value=fill_values_symbol, elem_id="xyz_grid_fill_z_tool_button", visible=False)
with gr.Row(variant="compact", elem_id="axis_options"):
- draw_legend = gr.Checkbox(label='Draw legend', value=True, elem_id=self.elem_id("draw_legend"))
- include_lone_images = gr.Checkbox(label='Include Sub Images', value=False, elem_id=self.elem_id("include_lone_images"))
- include_sub_grids = gr.Checkbox(label='Include Sub Grids', value=False, elem_id=self.elem_id("include_sub_grids"))
- no_fixed_seeds = gr.Checkbox(label='Keep -1 for seeds', value=False, elem_id=self.elem_id("no_fixed_seeds"))
+ with gr.Column():
+ draw_legend = gr.Checkbox(label='Draw legend', value=True, elem_id=self.elem_id("draw_legend"))
+ no_fixed_seeds = gr.Checkbox(label='Keep -1 for seeds', value=False, elem_id=self.elem_id("no_fixed_seeds"))
+ with gr.Column():
+ include_lone_images = gr.Checkbox(label='Include Sub Images', value=False, elem_id=self.elem_id("include_lone_images"))
+ include_sub_grids = gr.Checkbox(label='Include Sub Grids', value=False, elem_id=self.elem_id("include_sub_grids"))
+ with gr.Column():
+ margin_size = gr.Slider(label="Grid margins (px)", minimum=0, maximum=500, value=0, step=2, elem_id=self.elem_id("margin_size"))
+
+ with gr.Row(variant="compact", elem_id="swap_axes"):
swap_xy_axes_button = gr.Button(value="Swap X/Y axes", elem_id="xy_grid_swap_axes_button")
swap_yz_axes_button = gr.Button(value="Swap Y/Z axes", elem_id="yz_grid_swap_axes_button")
swap_xz_axes_button = gr.Button(value="Swap X/Z axes", elem_id="xz_grid_swap_axes_button")
- def swap_axes(axis1_type, axis1_values, axis2_type, axis2_values):
- return self.current_axis_options[axis2_type].label, axis2_values, self.current_axis_options[axis1_type].label, axis1_values
+ def swap_axes(axis1_type, axis1_values, axis1_values_dropdown, axis2_type, axis2_values, axis2_values_dropdown):
+ return self.current_axis_options[axis2_type].label, axis2_values, axis2_values_dropdown, self.current_axis_options[axis1_type].label, axis1_values, axis1_values_dropdown
- xy_swap_args = [x_type, x_values, y_type, y_values]
+ xy_swap_args = [x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown]
swap_xy_axes_button.click(swap_axes, inputs=xy_swap_args, outputs=xy_swap_args)
- yz_swap_args = [y_type, y_values, z_type, z_values]
+ yz_swap_args = [y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown]
swap_yz_axes_button.click(swap_axes, inputs=yz_swap_args, outputs=yz_swap_args)
- xz_swap_args = [x_type, x_values, z_type, z_values]
+ xz_swap_args = [x_type, x_values, x_values_dropdown, z_type, z_values, z_values_dropdown]
swap_xz_axes_button.click(swap_axes, inputs=xz_swap_args, outputs=xz_swap_args)
def fill(x_type):
axis = self.current_axis_options[x_type]
- return ", ".join(axis.choices()) if axis.choices else gr.update()
-
- fill_x_button.click(fn=fill, inputs=[x_type], outputs=[x_values])
- fill_y_button.click(fn=fill, inputs=[y_type], outputs=[y_values])
- fill_z_button.click(fn=fill, inputs=[z_type], outputs=[z_values])
-
- def select_axis(x_type):
- return gr.Button.update(visible=self.current_axis_options[x_type].choices is not None)
-
- x_type.change(fn=select_axis, inputs=[x_type], outputs=[fill_x_button])
- y_type.change(fn=select_axis, inputs=[y_type], outputs=[fill_y_button])
- z_type.change(fn=select_axis, inputs=[z_type], outputs=[fill_z_button])
+ return axis.choices() if axis.choices else gr.update()
+
+ fill_x_button.click(fn=fill, inputs=[x_type], outputs=[x_values_dropdown])
+ fill_y_button.click(fn=fill, inputs=[y_type], outputs=[y_values_dropdown])
+ fill_z_button.click(fn=fill, inputs=[z_type], outputs=[z_values_dropdown])
+
+ def select_axis(axis_type,axis_values_dropdown):
+ choices = self.current_axis_options[axis_type].choices
+ has_choices = choices is not None
+ current_values = axis_values_dropdown
+ if has_choices:
+ choices = choices()
+ if isinstance(current_values,str):
+ current_values = current_values.split(",")
+ current_values = list(filter(lambda x: x in choices, current_values))
+ return gr.Button.update(visible=has_choices),gr.Textbox.update(visible=not has_choices),gr.update(choices=choices if has_choices else None,visible=has_choices,value=current_values)
+
+ x_type.change(fn=select_axis, inputs=[x_type,x_values_dropdown], outputs=[fill_x_button,x_values,x_values_dropdown])
+ y_type.change(fn=select_axis, inputs=[y_type,y_values_dropdown], outputs=[fill_y_button,y_values,y_values_dropdown])
+ z_type.change(fn=select_axis, inputs=[z_type,z_values_dropdown], outputs=[fill_z_button,z_values,z_values_dropdown])
+
+ def get_dropdown_update_from_params(axis,params):
+ val_key = axis + " Values"
+ vals = params.get(val_key,"")
+ valslist = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(vals))) if x]
+ return gr.update(value = valslist)
self.infotext_fields = (
(x_type, "X Type"),
(x_values, "X Values"),
+ (x_values_dropdown, lambda params:get_dropdown_update_from_params("X",params)),
(y_type, "Y Type"),
(y_values, "Y Values"),
+ (y_values_dropdown, lambda params:get_dropdown_update_from_params("Y",params)),
(z_type, "Z Type"),
(z_values, "Z Values"),
+ (z_values_dropdown, lambda params:get_dropdown_update_from_params("Z",params)),
)
- return [x_type, x_values, y_type, y_values, z_type, z_values, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds]
+ return [x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, margin_size]
- def run(self, p, x_type, x_values, y_type, y_values, z_type, z_values, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds):
+ def run(self, p, x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, margin_size):
if not no_fixed_seeds:
modules.processing.fix_seed(p)
if not opts.return_grid:
p.batch_size = 1
- def process_axis(opt, vals):
+ def process_axis(opt, vals, vals_dropdown):
if opt.label == 'Nothing':
return [0]
- valslist = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(vals)))]
+ if opt.choices is not None:
+ valslist = vals_dropdown
+ else:
+ valslist = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(vals))) if x]
if opt.type == int:
valslist_ext = []
@@ -464,13 +530,24 @@ class Script(scripts.Script):
return valslist
x_opt = self.current_axis_options[x_type]
- xs = process_axis(x_opt, x_values)
+ if x_opt.choices is not None:
+ x_values = ",".join(x_values_dropdown)
+ xs = process_axis(x_opt, x_values, x_values_dropdown)
y_opt = self.current_axis_options[y_type]
- ys = process_axis(y_opt, y_values)
+ if y_opt.choices is not None:
+ y_values = ",".join(y_values_dropdown)
+ ys = process_axis(y_opt, y_values, y_values_dropdown)
z_opt = self.current_axis_options[z_type]
- zs = process_axis(z_opt, z_values)
+ if z_opt.choices is not None:
+ z_values = ",".join(z_values_dropdown)
+ zs = process_axis(z_opt, z_values, z_values_dropdown)
+
+ # this could be moved to common code, but unlikely to be ever triggered anywhere else
+ Image.MAX_IMAGE_PIXELS = None # disable check in Pillow and rely on check below to allow large custom image sizes
+ grid_mp = round(len(xs) * len(ys) * len(zs) * p.width * p.height / 1000000)
+ assert grid_mp < opts.img_max_size_mp, f'Error: Resulting grid would be too large ({grid_mp} MPixels) (max configured size is {opts.img_max_size_mp} MPixels)'
def fix_axis_seeds(axis_opt, axis_list):
if axis_opt.label in ['Seed', 'Var. seed']:
@@ -512,12 +589,14 @@ class Script(scripts.Script):
print(f"X/Y/Z plot will create {len(xs) * len(ys) * len(zs) * image_cell_count} images on {len(zs)} {len(xs)}x{len(ys)} grid{plural_s}{cell_console_text}. (Total steps to process: {total_steps})")
shared.total_tqdm.updateTotal(total_steps)
- grid_infotext = [None]
+ state.xyz_plot_x = AxisInfo(x_opt, xs)
+ state.xyz_plot_y = AxisInfo(y_opt, ys)
+ state.xyz_plot_z = AxisInfo(z_opt, zs)
# If one of the axes is very slow to change between (like SD model
# checkpoint), then make sure it is in the outer iteration of the nested
# `for` loop.
- first_axes_processed = 'x'
+ first_axes_processed = 'z'
second_axes_processed = 'y'
if x_opt.cost > y_opt.cost and x_opt.cost > z_opt.cost:
first_axes_processed = 'x'
@@ -538,7 +617,9 @@ class Script(scripts.Script):
else:
second_axes_processed = 'y'
- def cell(x, y, z):
+ grid_infotext = [None] * (1 + len(zs))
+
+ def cell(x, y, z, ix, iy, iz):
if shared.state.interrupted:
return Processed(p, [], p.seed, "")
@@ -550,7 +631,9 @@ class Script(scripts.Script):
res = process_images(pc)
- if grid_infotext[0] is None:
+ # Sets subgrid infotexts
+ subgrid_index = 1 + iz
+ if grid_infotext[subgrid_index] is None and ix == 0 and iy == 0:
pc.extra_generation_params = copy(pc.extra_generation_params)
pc.extra_generation_params['Script'] = self.title()
@@ -566,6 +649,12 @@ class Script(scripts.Script):
if y_opt.label in ["Seed", "Var. seed"] and not no_fixed_seeds:
pc.extra_generation_params["Fixed Y Values"] = ", ".join([str(y) for y in ys])
+ grid_infotext[subgrid_index] = processing.create_infotext(pc, pc.all_prompts, pc.all_seeds, pc.all_subseeds)
+
+ # Sets main grid infotext
+ if grid_infotext[0] is None and ix == 0 and iy == 0 and iz == 0:
+ pc.extra_generation_params = copy(pc.extra_generation_params)
+
if z_opt.label != 'Nothing':
pc.extra_generation_params["Z Type"] = z_opt.label
pc.extra_generation_params["Z Values"] = z_values
@@ -577,7 +666,7 @@ class Script(scripts.Script):
return res
with SharedSettingsStackHelper():
- processed, sub_grids = draw_xyz_grid(
+ processed = draw_xyz_grid(
p,
xs=xs,
ys=ys,
@@ -590,14 +679,37 @@ class Script(scripts.Script):
include_lone_images=include_lone_images,
include_sub_grids=include_sub_grids,
first_axes_processed=first_axes_processed,
- second_axes_processed=second_axes_processed
+ second_axes_processed=second_axes_processed,
+ margin_size=margin_size
)
- if opts.grid_save and len(sub_grids) > 1:
- for sub_grid in sub_grids:
- images.save_image(sub_grid, p.outpath_grids, "xyz_grid", info=grid_infotext[0], extension=opts.grid_format, prompt=p.prompt, seed=processed.seed, grid=True, p=p)
+ if not processed.images:
+ # It broke, no further handling needed.
+ return processed
+
+ z_count = len(zs)
+
+ # Set the grid infotexts to the real ones with extra_generation_params (1 main grid + z_count sub-grids)
+ processed.infotexts[:1+z_count] = grid_infotext[:1+z_count]
+
+ if not include_lone_images:
+ # Don't need sub-images anymore, drop from list:
+ processed.images = processed.images[:z_count+1]
if opts.grid_save:
- images.save_image(processed.images[0], p.outpath_grids, "xyz_grid", info=grid_infotext[0], extension=opts.grid_format, prompt=p.prompt, seed=processed.seed, grid=True, p=p)
+ # Auto-save main and sub-grids:
+ grid_count = z_count + 1 if z_count > 1 else 1
+ for g in range(grid_count):
+ #TODO: See previous comment about intentional data misalignment.
+ adj_g = g-1 if g > 0 else g
+ images.save_image(processed.images[g], p.outpath_grids, "xyz_grid", info=processed.infotexts[g], extension=opts.grid_format, prompt=processed.all_prompts[adj_g], seed=processed.all_seeds[adj_g], grid=True, p=processed)
+
+ if not include_sub_grids:
+ # Done with sub-grids, drop all related information:
+ for sg in range(z_count):
+ del processed.images[1]
+ del processed.all_prompts[1]
+ del processed.all_seeds[1]
+ del processed.infotexts[1]
return processed
diff --git a/style.css b/style.css
index 05572f66..937e1dc7 100644
--- a/style.css
+++ b/style.css
@@ -1,270 +1,372 @@
-.container {
- max-width: 100%;
-}
-.token-counter{
- position: absolute;
- display: inline-block;
- right: 2em;
- min-width: 0 !important;
- width: auto;
- z-index: 100;
+/* general gradio fixes */
+
+:root, .dark{
+ --checkbox-label-gap: 0.25em 0.1em;
+ --section-header-text-size: 12pt;
+ --block-background-fill: transparent;
}
-.token-counter.error span{
- box-shadow: 0 0 0.0 0.3em rgba(255,0,0,0.15), inset 0 0 0.6em rgba(255,0,0,0.075);
- border: 2px solid rgba(255,0,0,0.4) !important;
+.block.padded:not(.gradio-accordion) {
+ padding: 0 !important;
}
-.token-counter div{
- display: inline;
+div.gradio-container{
+ max-width: unset !important;
}
-.token-counter span{
- padding: 0.1em 0.75em;
+.hidden{
+ display: none;
}
-#sh{
- min-width: 2em;
- min-height: 2em;
- max-width: 2em;
- max-height: 2em;
- flex-grow: 0;
- padding-left: 0.25em;
- padding-right: 0.25em;
- margin: 0.1em 0;
- opacity: 0%;
- cursor: default;
+.compact{
+ background: transparent !important;
+ padding: 0 !important;
}
-.output-html p {margin: 0 0.5em;}
+div.form{
+ border-width: 0;
+ box-shadow: none;
+ background: transparent;
+ overflow: visible;
+ gap: 0.5em;
+}
-.row > *,
-.row > .gr-form > * {
- min-width: min(120px, 100%);
- flex: 1 1 0%;
+.block.gradio-dropdown,
+.block.gradio-slider,
+.block.gradio-checkbox,
+.block.gradio-textbox,
+.block.gradio-radio,
+.block.gradio-checkboxgroup,
+.block.gradio-number,
+.block.gradio-colorpicker
+{
+ border-width: 0 !important;
+ box-shadow: none !important;
}
-.performance {
- font-size: 0.85em;
- color: #444;
+.gap.compact{
+ padding: 0;
+ gap: 0.2em 0;
}
-.performance p{
- display: inline-block;
+div.compact{
+ gap: 1em;
}
-.performance .time {
- margin-right: 0;
+.gradio-dropdown label span:not(.has-info),
+.gradio-textbox label span:not(.has-info),
+.gradio-number label span:not(.has-info)
+{
+ margin-bottom: 0;
}
-.performance .vram {
+.gradio-dropdown ul.options{
+ z-index: 3000;
+ min-width: fit-content;
+ max-width: inherit;
+ white-space: nowrap;
}
-#txt2img_generate, #img2img_generate {
- min-height: 4.5em;
+.gradio-dropdown ul.options li.item {
+ padding: 0.05em 0;
}
-@media screen and (min-width: 2500px) {
- #txt2img_gallery, #img2img_gallery {
- min-height: 768px;
- }
+.gradio-dropdown ul.options li.item.selected {
+ background-color: var(--neutral-100);
}
-#txt2img_gallery img, #img2img_gallery img{
- object-fit: scale-down;
+.dark .gradio-dropdown ul.options li.item.selected {
+ background-color: var(--neutral-900);
}
-#txt2img_actions_column, #img2img_actions_column {
- margin: 0.35rem 0.75rem 0.35rem 0;
+
+.gradio-dropdown div.wrap.wrap.wrap.wrap{
+ box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);
}
-#script_list {
- padding: .625rem .75rem 0 .625rem;
+
+.gradio-dropdown:not(.multiselect) .wrap-inner.wrap-inner.wrap-inner{
+ flex-wrap: unset;
}
-.justify-center.overflow-x-scroll {
- justify-content: left;
+
+.gradio-dropdown .single-select{
+ white-space: nowrap;
+ overflow: hidden;
}
-.justify-center.overflow-x-scroll button:first-of-type {
- margin-left: auto;
+.gradio-dropdown .token-remove.remove-all.remove-all{
+ display: none;
}
-.justify-center.overflow-x-scroll button:last-of-type {
- margin-right: auto;
+.gradio-dropdown.multiselect .token-remove.remove-all.remove-all{
+ display: flex;
}
-[id$=_random_seed], [id$=_random_subseed], [id$=_reuse_seed], [id$=_reuse_subseed], #open_folder{
- min-width: 2.3em;
- height: 2.5em;
- flex-grow: 0;
- padding-left: 0.25em;
- padding-right: 0.25em;
+.gradio-slider input[type="number"]{
+ width: 6em;
}
-#hidden_element{
- display: none;
+.block.gradio-checkbox {
+ margin: 0.75em 1.5em 0 0;
}
-[id$=_seed_row], [id$=_subseed_row]{
- gap: 0.5rem;
- padding: 0.6em;
+.gradio-html div.wrap{
+ height: 100%;
+}
+div.gradio-html.min{
+ min-height: 0;
}
-[id$=_subseed_show_box]{
- min-width: auto;
- flex-grow: 0;
+.block.gradio-gallery{
+ background: var(--input-background-fill);
}
-[id$=_subseed_show_box] > div{
- border: 0;
- height: 100%;
+.gradio-container .prose a, .gradio-container .prose a:visited{
+ color: unset;
+ text-decoration: none;
}
-[id$=_subseed_show]{
- min-width: auto;
- flex-grow: 0;
- padding: 0;
+
+
+/* general styled components */
+
+.gradio-button.tool{
+ max-width: 2.2em;
+ min-width: 2.2em !important;
+ height: 2.4em;
+ align-self: end;
+ line-height: 1em;
+ border-radius: 0.5em;
}
-[id$=_subseed_show] label{
- height: 100%;
+.gradio-button.secondary-down{
+ background: var(--button-secondary-background-fill);
+ color: var(--button-secondary-text-color);
+}
+.gradio-button.secondary-down, .gradio-button.secondary-down:hover{
+ box-shadow: 1px 1px 1px rgba(0,0,0,0.25) inset, 0px 0px 3px rgba(0,0,0,0.15) inset;
+}
+.gradio-button.secondary-down:hover{
+ background: var(--button-secondary-background-fill-hover);
+ color: var(--button-secondary-text-color-hover);
}
-#txt2img_actions_column, #img2img_actions_column{
- gap: 0;
- margin-right: .75rem;
+.checkboxes-row{
+ margin-bottom: 0.5em;
+ margin-left: 0em;
+}
+.checkboxes-row > div{
+ flex: 0;
+ white-space: nowrap;
+ min-width: auto;
}
-#txt2img_tools, #img2img_tools{
- gap: 0.4em;
+button.custom-button{
+ border-radius: var(--button-large-radius);
+ padding: var(--button-large-padding);
+ font-weight: var(--button-large-text-weight);
+ border: var(--button-border-width) solid var(--button-secondary-border-color);
+ background: var(--button-secondary-background-fill);
+ color: var(--button-secondary-text-color);
+ font-size: var(--button-large-text-size);
+ display: inline-flex;
+ justify-content: center;
+ align-items: center;
+ transition: var(--button-transition);
+ box-shadow: var(--button-shadow);
+ text-align: center;
}
-#interrogate_col{
+
+/* txt2img/img2img specific */
+
+.block.token-counter{
+ position: absolute;
+ display: inline-block;
+ right: 1em;
min-width: 0 !important;
- max-width: 8em !important;
- margin-right: 1em;
- gap: 0;
+ width: auto;
+ z-index: 100;
+ top: -0.75em;
}
-#interrogate, #deepbooru{
- margin: 0em 0.25em 0.5em 0.25em;
- min-width: 8em;
- max-width: 8em;
+
+.block.token-counter span{
+ background: var(--input-background-fill) !important;
+ box-shadow: 0 0 0.0 0.3em rgba(192,192,192,0.15), inset 0 0 0.6em rgba(192,192,192,0.075);
+ border: 2px solid rgba(192,192,192,0.4) !important;
+ border-radius: 0.4em;
}
-#style_pos_col, #style_neg_col{
- min-width: 8em !important;
+.block.token-counter.error span{
+ box-shadow: 0 0 0.0 0.3em rgba(255,0,0,0.15), inset 0 0 0.6em rgba(255,0,0,0.075);
+ border: 2px solid rgba(255,0,0,0.4) !important;
}
-#txt2img_styles_row, #img2img_styles_row{
- gap: 0.25em;
- margin-top: 0.3em;
+.block.token-counter div{
+ display: inline;
}
-#txt2img_styles_row > button, #img2img_styles_row > button{
- margin: 0;
+.block.token-counter span{
+ padding: 0.1em 0.75em;
}
-#txt2img_styles, #img2img_styles{
- padding: 0;
+[id$=_subseed_show]{
+ min-width: auto !important;
+ flex-grow: 0 !important;
+ display: flex;
}
-#txt2img_styles > label > div, #img2img_styles > label > div{
- min-height: 3.2em;
+[id$=_subseed_show] label{
+ margin-bottom: 0.5em;
+ align-self: end;
}
-ul.list-none{
- max-height: 35em;
- z-index: 2000;
+.performance {
+ font-size: 0.85em;
+ color: #444;
}
-.gr-form{
- background: transparent;
+.performance p{
+ display: inline-block;
}
-.my-4{
- margin-top: 0;
- margin-bottom: 0;
+.performance .time {
+ margin-right: 0;
}
-#resize_mode{
- flex: 1.5;
+.performance .vram {
}
-button{
- align-self: stretch !important;
+#txt2img_generate, #img2img_generate {
+ min-height: 4.5em;
}
-.overflow-hidden, .gr-panel{
- overflow: visible !important;
+@media screen and (min-width: 2500px) {
+ #txt2img_gallery, #img2img_gallery {
+ min-height: 768px;
+ }
}
-#x_type, #y_type{
- max-width: 10em;
+#txt2img_gallery img, #img2img_gallery img{
+ object-fit: scale-down;
+}
+#txt2img_actions_column, #img2img_actions_column {
+ gap: 0.5em;
+}
+#txt2img_tools, #img2img_tools{
+ gap: 0.4em;
}
-#txt2img_preview, #img2img_preview, #ti_preview{
+.interrogate-col{
+ min-width: 0 !important;
+ max-width: fit-content;
+ gap: 0.5em;
+}
+.interrogate-col > button{
+ flex: 1;
+}
+
+.generate-box{
+ position: relative;
+}
+.gradio-button.generate-box-skip, .gradio-button.generate-box-interrupt{
position: absolute;
- width: 320px;
+ width: 50%;
+ height: 100%;
+ display: none;
+ background: #b4c0cc;
+}
+.gradio-button.generate-box-skip:hover, .gradio-button.generate-box-interrupt:hover{
+ background: #c2cfdb;
+}
+.gradio-button.generate-box-interrupt{
left: 0;
+ border-radius: 0.5rem 0 0 0.5rem;
+}
+.gradio-button.generate-box-skip{
right: 0;
- margin-left: auto;
- margin-right: auto;
- margin-top: 34px;
- z-index: 100;
- border: none;
- border-top-left-radius: 0;
- border-top-right-radius: 0;
+ border-radius: 0 0.5rem 0.5rem 0;
}
-@media screen and (min-width: 768px) {
- #txt2img_preview, #img2img_preview, #ti_preview {
- position: absolute;
- }
+#txtimg_hr_finalres{
+ min-height: 0 !important;
+ padding: .625rem .75rem;
+ margin-left: -0.75em
}
-@media screen and (max-width: 767px) {
- #txt2img_preview, #img2img_preview, #ti_preview {
- position: relative;
- }
+#img2img_scale_resolution_preview.block{
+ display: flex;
+ align-items: end;
}
-#txt2img_preview div.left-0.top-0, #img2img_preview div.left-0.top-0, #ti_preview div.left-0.top-0{
- display: none;
+#txtimg_hr_finalres .resolution, #img2img_scale_resolution_preview .resolution{
+ font-weight: bold;
}
-fieldset span.text-gray-500, .gr-block.gr-box span.text-gray-500, label.block span{
- position: absolute;
- top: -0.7em;
- line-height: 1.2em;
- padding: 0;
- margin: 0 0.5em;
+.inactive{
+ opacity: 0.5;
+}
- background-color: white;
- box-shadow: 6px 0 6px 0px white, -6px 0 6px 0px white;
+[id$=_column_batch]{
+ min-width: min(13.5em, 100%) !important;
+}
- z-index: 300;
+div.dimensions-tools{
+ min-width: 0 !important;
+ max-width: fit-content;
+ flex-direction: row;
+ align-content: center;
}
-.dark fieldset span.text-gray-500, .dark .gr-block.gr-box span.text-gray-500, .dark label.block span{
- background-color: rgb(31, 41, 55);
- box-shadow: none;
- border: 1px solid rgba(128, 128, 128, 0.1);
- border-radius: 6px;
- padding: 0.1em 0.5em;
+div#extras_scale_to_tab div.form{
+ flex-direction: row;
}
-#txt2img_column_batch, #img2img_column_batch{
- min-width: min(13.5em, 100%) !important;
+#mode_img2img .gradio-image > div.fixed-height, #mode_img2img .gradio-image > div.fixed-height img{
+ height: 480px !important;
+ max-height: 480px !important;
+ min-height: 480px !important;
}
-#settings fieldset span.text-gray-500, #settings .gr-block.gr-box span.text-gray-500, #settings label.block span{
- position: relative;
- border: none;
- margin-right: 8em;
+#img2img_sketch, #img2maskimg, #inpaint_sketch {
+ overflow: overlay !important;
+ resize: auto;
+ background: var(--panel-background-fill);
+ z-index: 5;
}
-#settings .gr-panel div.flex-col div.justify-between div{
- position: relative;
- z-index: 200;
+.image-buttons button{
+ min-width: auto;
+}
+
+.infotext {
+ overflow-wrap: break-word;
+}
+
+#img2img_column_batch{
+ align-self: end;
+ margin-bottom: 0.9em;
+}
+
+#img2img_unused_scale_by_slider{
+ visibility: hidden;
+ width: 0.5em;
+ max-width: 0.5em;
+ min-width: 0.5em;
+}
+
+/* settings */
+#quicksettings {
+ width: fit-content;
+ align-items: end;
+}
+
+#quicksettings > div, #quicksettings > fieldset{
+ max-width: 24em;
+ min-width: 24em;
+ padding: 0;
+ border: none;
+ box-shadow: none;
+ background: none;
}
#settings{
@@ -276,17 +378,18 @@ fieldset span.text-gray-500, .gr-block.gr-box span.text-gray-500, label.block s
margin-left: 10em;
}
-#settings > div.flex-wrap{
+#settings > div.tab-nav{
float: left;
display: block;
margin-left: 0;
width: 10em;
}
-#settings > div.flex-wrap button{
+#settings > div.tab-nav button{
display: block;
border: none;
text-align: left;
+ white-space: initial;
}
#settings_result{
@@ -294,29 +397,8 @@ fieldset span.text-gray-500, .gr-block.gr-box span.text-gray-500, label.block s
margin: 0 1.2em;
}
-input[type="range"]{
- margin: 0.5em 0 -0.3em 0;
-}
-
-#mask_bug_info {
- text-align: center;
- display: block;
- margin-top: -0.75em;
- margin-bottom: -0.75em;
-}
-
-#txt2img_negative_prompt, #img2img_negative_prompt{
-}
-
-/* gradio 3.8 adds opacity to progressbar which makes it blink; disable it here */
-.transition.opacity-20 {
- opacity: 1 !important;
-}
-
-/* more gradio's garbage cleanup */
-.min-h-\[4rem\] { min-height: unset !important; }
-.min-h-\[6rem\] { min-height: unset !important; }
+/* live preview */
.progressDiv{
position: relative;
height: 20px;
@@ -362,89 +444,96 @@ input[type="range"]{
height: 100%;
}
-#lightboxModal{
- display: none;
- position: fixed;
- z-index: 1001;
- padding-top: 100px;
- left: 0;
- top: 0;
- width: 100%;
- height: 100%;
- overflow: auto;
- background-color: rgba(20, 20, 20, 0.95);
- user-select: none;
- -webkit-user-select: none;
+/* fullscreen popup (ie in Lora's (i) button) */
+
+.popup-metadata{
+ color: black;
+ background: white;
+ display: inline-block;
+ padding: 1em;
+ white-space: pre-wrap;
}
-.modalControls {
- display: grid;
- grid-template-columns: 32px 32px 32px 1fr 32px;
- grid-template-areas: "zoom tile save space close";
- position: absolute;
- top: 0;
+.global-popup{
+ display: flex;
+ position: fixed;
+ z-index: 1001;
left: 0;
- right: 0;
- padding: 16px;
- gap: 16px;
- background-color: rgba(0,0,0,0.2);
+ top: 0;
+ width: 100%;
+ height: 100%;
+ overflow: auto;
+ background-color: rgba(20, 20, 20, 0.95);
}
-.modalClose {
- grid-area: close;
-}
-.modalZoom {
- grid-area: zoom;
+.global-popup-close:before {
+ content: "×";
}
-.modalSave {
- grid-area: save;
+.global-popup-close{
+ position: fixed;
+ right: 0.25em;
+ top: 0;
+ cursor: pointer;
+ color: white;
+ font-size: 32pt;
}
-.modalTileImage {
- grid-area: tile;
+.global-popup-inner{
+ display: inline-block;
+ margin: auto;
+ padding: 2em;
}
-.modalClose,
-.modalZoom,
-.modalTileImage {
- color: white;
- font-size: 35px;
- font-weight: bold;
- cursor: pointer;
+/* fullpage image viewer */
+
+#lightboxModal{
+ display: none;
+ position: fixed;
+ z-index: 1001;
+ left: 0;
+ top: 0;
+ width: 100%;
+ height: 100%;
+ overflow: auto;
+ background-color: rgba(20, 20, 20, 0.95);
+ user-select: none;
+ -webkit-user-select: none;
+ flex-direction: column;
}
-.modalSave {
+.modalControls {
+ display: flex;
+ gap: 1em;
+ padding: 1em;
+ background-color: rgba(0,0,0,0.2);
+}
+.modalClose {
+ margin-left: auto;
+}
+.modalControls span{
color: white;
- font-size: 28px;
- margin-top: 8px;
+ font-size: 35px;
font-weight: bold;
cursor: pointer;
+ width: 1em;
}
-.modalClose:hover,
-.modalClose:focus,
-.modalSave:hover,
-.modalSave:focus,
-.modalZoom:hover,
-.modalZoom:focus {
- color: #999;
- text-decoration: none;
- cursor: pointer;
+.modalControls span:hover, .modalControls span:focus{
+ color: #999;
+ text-decoration: none;
}
-#modalImage {
+#lightboxModal > img {
display: block;
- margin-left: auto;
- margin-right: auto;
- margin-top: auto;
+ margin: auto;
width: auto;
}
-.modalImageFullscreen {
+#lightboxModal > img.modalImageFullscreen{
object-fit: contain;
- height: 90%;
+ height: 100%;
}
.modalPrev,
@@ -474,45 +563,18 @@ input[type="range"]{
background-color: rgba(0, 0, 0, 0.8);
}
-#imageARPreview{
- position:absolute;
- top:0px;
- left:0px;
- border:2px solid red;
- background:rgba(255, 0, 0, 0.3);
- z-index: 900;
- pointer-events:none;
- display:none
-}
-
-#txt2img_generate_box, #img2img_generate_box{
- position: relative;
-}
-
-#txt2img_interrupt, #img2img_interrupt, #txt2img_skip, #img2img_skip{
+#imageARPreview {
position: absolute;
- width: 50%;
- height: 100%;
- background: #b4c0cc;
+ top: 0px;
+ left: 0px;
+ border: 2px solid red;
+ background: rgba(255, 0, 0, 0.3);
+ z-index: 900;
+ pointer-events: none;
display: none;
}
-#txt2img_interrupt, #img2img_interrupt{
- left: 0;
- border-radius: 0.5rem 0 0 0.5rem;
-}
-#txt2img_skip, #img2img_skip{
- right: 0;
- border-radius: 0 0.5rem 0.5rem 0;
-}
-
-.red {
- color: red;
-}
-
-.gallery-item {
- --tw-bg-opacity: 0 !important;
-}
+/* context menu (ie for the generate button) */
#context-menu{
z-index:9999;
@@ -541,61 +603,8 @@ input[type="range"]{
background: #a55000;
}
-#quicksettings {
- width: fit-content;
-}
-
-#quicksettings > div, #quicksettings > fieldset{
- max-width: 24em;
- min-width: 24em;
- padding: 0;
- border: none;
- box-shadow: none;
- background: none;
- margin-right: 10px;
-}
-
-#quicksettings > div > div > div > label > span {
- position: relative;
- margin-right: 9em;
- margin-bottom: -1em;
-}
-
-canvas[key="mask"] {
- z-index: 12 !important;
- filter: invert();
- mix-blend-mode: multiply;
- pointer-events: none;
-}
-
-
-/* gradio 3.4.1 stuff for editable scrollbar values */
-.gr-box > div > div > input.gr-text-input{
- position: absolute;
- right: 0.5em;
- top: -0.6em;
- z-index: 400;
- width: 6em;
-}
-#quicksettings .gr-box > div > div > input.gr-text-input {
- top: -1.12em;
-}
-
-.row.gr-compact{
- overflow: visible;
-}
-
-#img2img_image, #img2img_image > .h-60, #img2img_image > .h-60 > div, #img2img_image > .h-60 > div > img,
-#img2img_sketch, #img2img_sketch > .h-60, #img2img_sketch > .h-60 > div, #img2img_sketch > .h-60 > div > img,
-#img2maskimg, #img2maskimg > .h-60, #img2maskimg > .h-60 > div, #img2maskimg > .h-60 > div > img,
-#inpaint_sketch, #inpaint_sketch > .h-60, #inpaint_sketch > .h-60 > div, #inpaint_sketch > .h-60 > div > img
-{
- height: 480px !important;
- max-height: 480px !important;
- min-height: 480px !important;
-}
-/* Extensions */
+/* extensions */
#tab_extensions table{
border-collapse: collapse;
@@ -608,6 +617,7 @@ canvas[key="mask"] {
#tab_extensions table input[type="checkbox"]{
margin-right: 0.5em;
+ appearance: checkbox;
}
#tab_extensions button{
@@ -632,74 +642,7 @@ canvas[key="mask"] {
font-size: 90%;
}
-#image_buttons_txt2img button, #image_buttons_img2img button, #image_buttons_extras button{
- min-width: auto;
- padding-left: 0.5em;
- padding-right: 0.5em;
-}
-
-.gr-form{
- background-color: white;
-}
-
-.dark .gr-form{
- background-color: rgb(31 41 55 / var(--tw-bg-opacity));
-}
-
-.gr-button-tool, .gr-button-tool-top{
- max-width: 2.5em;
- min-width: 2.5em !important;
- height: 2.4em;
-}
-
-.gr-button-tool{
- margin: 0.6em 0em 0.55em 0;
-}
-
-.gr-button-tool-top, #settings .gr-button-tool{
- margin: 1.6em 0.7em 0.55em 0;
-}
-
-
-#modelmerger_results_container{
- margin-top: 1em;
- overflow: visible;
-}
-
-#modelmerger_models{
- gap: 0;
-}
-
-
-#quicksettings .gr-button-tool{
- margin: 0;
- border-color: unset;
- background-color: unset;
-}
-
-#modelmerger_interp_description>p {
- margin: 0!important;
- text-align: center;
-}
-#modelmerger_interp_description {
- margin: 0.35rem 0.75rem 1.23rem;
-}
-#img2img_settings > div.gr-form, #txt2img_settings > div.gr-form {
- padding-top: 0.9em;
- padding-bottom: 0.9em;
-}
-#txt2img_settings {
- padding-top: 1.16em;
- padding-bottom: 0.9em;
-}
-#img2img_settings {
- padding-bottom: 0.9em;
-}
-
-#img2img_settings div.gr-form .gr-form, #txt2img_settings div.gr-form .gr-form, #train_tabs div.gr-form .gr-form{
- border: none;
- padding-bottom: 0.5em;
-}
+/* replace original footer with ours */
footer {
display: none !important;
@@ -718,89 +661,12 @@ footer {
opacity: 0.85;
}
-#txtimg_hr_finalres{
- min-height: 0 !important;
- padding: .625rem .75rem;
- margin-left: -0.75em
-
-}
-
-#txtimg_hr_finalres .resolution{
- font-weight: bold;
-}
-
-#txt2img_checkboxes, #img2img_checkboxes{
- margin-bottom: 0.5em;
- margin-left: 0em;
-}
-#txt2img_checkboxes > div, #img2img_checkboxes > div{
- flex: 0;
- white-space: nowrap;
- min-width: auto;
-}
+/* extra networks UI */
-#img2img_copy_to_img2img, #img2img_copy_to_sketch, #img2img_copy_to_inpaint, #img2img_copy_to_inpaint_sketch{
- margin-left: 0em;
-}
-
-#axis_options {
- margin-left: 0em;
-}
-
-.inactive{
- opacity: 0.5;
-}
-
-[id*='_prompt_container']{
- gap: 0;
-}
-
-[id*='_prompt_container'] > div{
- margin: -0.4em 0 0 0;
-}
-
-.gr-compact {
- border: none;
-}
-
-.dark .gr-compact{
- background-color: rgb(31 41 55 / var(--tw-bg-opacity));
- margin-left: 0;
-}
-
-.gr-compact{
- overflow: visible;
-}
-
-.gr-compact > *{
-}
-
-.gr-compact .gr-block, .gr-compact .gr-form{
- border: none;
- box-shadow: none;
-}
-
-.gr-compact .gr-box{
- border-radius: .5rem !important;
- border-width: 1px !important;
-}
-
-#mode_img2img > div > div{
- gap: 0 !important;
-}
-
-[id*='img2img_copy_to_'] {
- border: none;
-}
-
-[id*='img2img_copy_to_'] > button {
-}
-
-[id*='img2img_label_copy_to_'] {
- font-size: 1.0em;
- font-weight: bold;
- text-align: center;
- line-height: 2.4em;
+.extra-network-cards{
+ height: 400px;
+ overflow: scroll;
+ resize: vertical;
}
.extra-networks > div > [id *= '_extra_']{
@@ -814,12 +680,12 @@ footer {
.extra-network-subdirs button{
margin: 0 0.15em;
}
-
-#txt2img_extra_networks .search, #img2img_extra_networks .search{
+.extra-networks .tab-nav .search{
display: inline-block;
max-width: 16em;
margin: 0.3em;
align-self: center;
+ width: 16em;
}
#txt2img_extra_view, #img2img_extra_view {
@@ -839,6 +705,28 @@ footer {
margin-left: 0.5em;
}
+
+.extra-network-cards .card .metadata-button:before, .extra-network-thumbs .card .metadata-button:before{
+ content: "🛈";
+}
+.extra-network-cards .card .metadata-button, .extra-network-thumbs .card .metadata-button{
+ display: none;
+ position: absolute;
+ right: 0;
+ color: white;
+ text-shadow: 2px 2px 3px black;
+ padding: 0.25em;
+ font-size: 22pt;
+ width: 1.5em;
+}
+.extra-network-cards .card:hover .metadata-button, .extra-network-thumbs .card:hover .metadata-button{
+ display: inline-block;
+}
+.extra-network-cards .card .metadata-button:hover, .extra-network-thumbs .card .metadata-button:hover{
+ color: red;
+}
+
+
.extra-network-thumbs {
display: flex;
flex-flow: row wrap;
@@ -856,7 +744,7 @@ footer {
}
.extra-network-thumbs .card:hover .additional a {
- display: block;
+ display: inline-block;
}
.extra-network-thumbs .actions .additional a {
@@ -923,12 +811,15 @@ footer {
left: 0;
right: 0;
padding: 0.5em;
- color: white;
background: rgba(0,0,0,0.5);
box-shadow: 0 0 0.25em 0.25em rgba(0,0,0,0.5);
text-shadow: 0 0 0.2em black;
}
+.extra-network-cards .card .actions *{
+ color: white;
+}
+
.extra-network-cards .card .actions:hover{
box-shadow: 0 0 0.75em 0.75em rgba(0,0,0,0.5) !important;
}
@@ -939,6 +830,17 @@ footer {
line-break: anywhere;
}
+.extra-network-cards .card .actions .description {
+ display: block;
+ max-height: 3em;
+ white-space: pre-wrap;
+ line-height: 1.1;
+}
+
+.extra-network-cards .card .actions .description:hover {
+ max-height: none;
+}
+
.extra-network-cards .card .actions:hover .additional{
display: block;
}
@@ -955,7 +857,3 @@ footer {
.extra-network-cards .card ul a:hover{
color: red;
}
-
-[id*='_prompt_container'] > div {
- margin: 0!important;
-}
diff --git a/test/basic_features/extras_test.py b/test/basic_features/extras_test.py
index 0170c511..8ed98747 100644
--- a/test/basic_features/extras_test.py
+++ b/test/basic_features/extras_test.py
@@ -1,7 +1,9 @@
+import os
import unittest
import requests
from gradio.processing_utils import encode_pil_to_base64
from PIL import Image
+from modules.paths import script_path
class TestExtrasWorking(unittest.TestCase):
def setUp(self):
@@ -19,7 +21,7 @@ class TestExtrasWorking(unittest.TestCase):
"upscaler_1": "None",
"upscaler_2": "None",
"extras_upscaler_2_visibility": 0,
- "image": encode_pil_to_base64(Image.open(r"test/test_files/img2img_basic.png"))
+ "image": encode_pil_to_base64(Image.open(os.path.join(script_path, r"test/test_files/img2img_basic.png")))
}
def test_simple_upscaling_performed(self):
@@ -31,7 +33,7 @@ class TestPngInfoWorking(unittest.TestCase):
def setUp(self):
self.url_png_info = "http://localhost:7860/sdapi/v1/extra-single-image"
self.png_info = {
- "image": encode_pil_to_base64(Image.open(r"test/test_files/img2img_basic.png"))
+ "image": encode_pil_to_base64(Image.open(os.path.join(script_path, r"test/test_files/img2img_basic.png")))
}
def test_png_info_performed(self):
@@ -42,7 +44,7 @@ class TestInterrogateWorking(unittest.TestCase):
def setUp(self):
self.url_interrogate = "http://localhost:7860/sdapi/v1/extra-single-image"
self.interrogate = {
- "image": encode_pil_to_base64(Image.open(r"test/test_files/img2img_basic.png")),
+ "image": encode_pil_to_base64(Image.open(os.path.join(script_path, r"test/test_files/img2img_basic.png"))),
"model": "clip"
}
diff --git a/test/basic_features/img2img_test.py b/test/basic_features/img2img_test.py
index 08c5c903..5240ec36 100644
--- a/test/basic_features/img2img_test.py
+++ b/test/basic_features/img2img_test.py
@@ -1,14 +1,16 @@
+import os
import unittest
import requests
from gradio.processing_utils import encode_pil_to_base64
from PIL import Image
+from modules.paths import script_path
class TestImg2ImgWorking(unittest.TestCase):
def setUp(self):
self.url_img2img = "http://localhost:7860/sdapi/v1/img2img"
self.simple_img2img = {
- "init_images": [encode_pil_to_base64(Image.open(r"test/test_files/img2img_basic.png"))],
+ "init_images": [encode_pil_to_base64(Image.open(os.path.join(script_path, r"test/test_files/img2img_basic.png")))],
"resize_mode": 0,
"denoising_strength": 0.75,
"mask": None,
@@ -47,11 +49,11 @@ class TestImg2ImgWorking(unittest.TestCase):
self.assertEqual(requests.post(self.url_img2img, json=self.simple_img2img).status_code, 200)
def test_inpainting_masked_performed(self):
- self.simple_img2img["mask"] = encode_pil_to_base64(Image.open(r"test/test_files/mask_basic.png"))
+ self.simple_img2img["mask"] = encode_pil_to_base64(Image.open(os.path.join(script_path, r"test/test_files/img2img_basic.png")))
self.assertEqual(requests.post(self.url_img2img, json=self.simple_img2img).status_code, 200)
def test_inpainting_with_inverted_masked_performed(self):
- self.simple_img2img["mask"] = encode_pil_to_base64(Image.open(r"test/test_files/mask_basic.png"))
+ self.simple_img2img["mask"] = encode_pil_to_base64(Image.open(os.path.join(script_path, r"test/test_files/img2img_basic.png")))
self.simple_img2img["inpainting_mask_invert"] = True
self.assertEqual(requests.post(self.url_img2img, json=self.simple_img2img).status_code, 200)
diff --git a/test/basic_features/txt2img_test.py b/test/basic_features/txt2img_test.py
index 5aa43a44..cb525fbb 100644
--- a/test/basic_features/txt2img_test.py
+++ b/test/basic_features/txt2img_test.py
@@ -66,6 +66,8 @@ class TestTxt2ImgWorking(unittest.TestCase):
self.assertEqual(requests.post(self.url_txt2img, json=self.simple_txt2img).status_code, 200)
self.simple_txt2img["sampler_index"] = "DDIM"
self.assertEqual(requests.post(self.url_txt2img, json=self.simple_txt2img).status_code, 200)
+ self.simple_txt2img["sampler_index"] = "UniPC"
+ self.assertEqual(requests.post(self.url_txt2img, json=self.simple_txt2img).status_code, 200)
def test_txt2img_multiple_batches_performed(self):
self.simple_txt2img["n_iter"] = 2
diff --git a/test/server_poll.py b/test/server_poll.py
index 42d56a4c..c732630f 100644
--- a/test/server_poll.py
+++ b/test/server_poll.py
@@ -1,6 +1,8 @@
import unittest
import requests
import time
+import os
+from modules.paths import script_path
def run_tests(proc, test_dir):
@@ -15,8 +17,8 @@ def run_tests(proc, test_dir):
break
if proc.poll() is None:
if test_dir is None:
- test_dir = "test"
- suite = unittest.TestLoader().discover(test_dir, pattern="*_test.py", top_level_dir="test")
+ test_dir = os.path.join(script_path, "test")
+ suite = unittest.TestLoader().discover(test_dir, pattern="*_test.py", top_level_dir=test_dir)
result = unittest.TextTestRunner(verbosity=2).run(suite)
return len(result.failures) + len(result.errors)
else:
diff --git a/webui-macos-env.sh b/webui-macos-env.sh
index 37cac4fb..10ab81c9 100644
--- a/webui-macos-env.sh
+++ b/webui-macos-env.sh
@@ -11,7 +11,7 @@ fi
export install_dir="$HOME"
export COMMANDLINE_ARGS="--skip-torch-cuda-test --upcast-sampling --no-half-vae --use-cpu interrogate"
-export TORCH_COMMAND="pip install torch==1.12.1 torchvision==0.13.1"
+export TORCH_COMMAND="pip install torch torchvision"
export K_DIFFUSION_REPO="https://github.com/brkirch/k-diffusion.git"
export K_DIFFUSION_COMMIT_HASH="51c9778f269cedb55a4d88c79c0246d35bdadb71"
export PYTORCH_ENABLE_MPS_FALLBACK=1
diff --git a/webui-user.sh b/webui-user.sh
index bfa53cb7..49a426ff 100644
--- a/webui-user.sh
+++ b/webui-user.sh
@@ -43,4 +43,7 @@
# Uncomment to enable accelerated launch
#export ACCELERATE="True"
+# Uncomment to disable TCMalloc
+#export NO_TCMALLOC="True"
+
###########################################
diff --git a/webui.py b/webui.py
index ddccf870..98b6d394 100644
--- a/webui.py
+++ b/webui.py
@@ -4,6 +4,8 @@ import time
import importlib
import signal
import re
+import warnings
+import json
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from fastapi.middleware.gzip import GZipMiddleware
@@ -12,24 +14,40 @@ from packaging import version
import logging
logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage())
-from modules import import_hook, errors, extra_networks, ui_extra_networks_checkpoints
-from modules import extra_networks_hypernet, ui_extra_networks_hypernets, ui_extra_networks_textual_inversion
-from modules.call_queue import wrap_queued_call, queue_lock, wrap_gradio_gpu_call
+from modules import paths, timer, import_hook, errors
+
+startup_timer = timer.Timer()
import torch
+import pytorch_lightning # pytorch_lightning should be imported after torch, but it re-enables warnings on import so import once to disable them
+warnings.filterwarnings(action="ignore", category=DeprecationWarning, module="pytorch_lightning")
+warnings.filterwarnings(action="ignore", category=UserWarning, module="torchvision")
+
+
+startup_timer.record("import torch")
+
+import gradio
+startup_timer.record("import gradio")
+
+import ldm.modules.encoders.modules
+startup_timer.record("import ldm")
+
+from modules import extra_networks, ui_extra_networks_checkpoints
+from modules import extra_networks_hypernet, ui_extra_networks_hypernets, ui_extra_networks_textual_inversion
+from modules.call_queue import wrap_queued_call, queue_lock, wrap_gradio_gpu_call
# Truncate version number of nightly/local build of PyTorch to not cause exceptions with CodeFormer or Safetensors
if ".dev" in torch.__version__ or "+git" in torch.__version__:
+ torch.__long_version__ = torch.__version__
torch.__version__ = re.search(r'[\d.]+[\d]', torch.__version__).group(0)
-from modules import shared, devices, sd_samplers, upscaler, extensions, localization, ui_tempdir, ui_extra_networks
+from modules import shared, devices, sd_samplers, upscaler, extensions, localization, ui_tempdir, ui_extra_networks, config_states
import modules.codeformer_model as codeformer
import modules.face_restoration
import modules.gfpgan_model as gfpgan
import modules.img2img
import modules.lowvram
-import modules.paths
import modules.scripts
import modules.sd_hijack
import modules.sd_models
@@ -44,6 +62,8 @@ from modules import modelloader
from modules.shared import cmd_opts
import modules.hypernetworks.hypernetwork
+startup_timer.record("other imports")
+
if cmd_opts.server_name:
server_name = cmd_opts.server_name
@@ -51,11 +71,51 @@ else:
server_name = "0.0.0.0" if cmd_opts.listen else None
+def fix_asyncio_event_loop_policy():
+ """
+ The default `asyncio` event loop policy only automatically creates
+ event loops in the main threads. Other threads must create event
+ loops explicitly or `asyncio.get_event_loop` (and therefore
+ `.IOLoop.current`) will fail. Installing this policy allows event
+ loops to be created automatically on any thread, matching the
+ behavior of Tornado versions prior to 5.0 (or 5.0 on Python 2).
+ """
+
+ import asyncio
+
+ if sys.platform == "win32" and hasattr(asyncio, "WindowsSelectorEventLoopPolicy"):
+ # "Any thread" and "selector" should be orthogonal, but there's not a clean
+ # interface for composing policies so pick the right base.
+ _BasePolicy = asyncio.WindowsSelectorEventLoopPolicy # type: ignore
+ else:
+ _BasePolicy = asyncio.DefaultEventLoopPolicy
+
+ class AnyThreadEventLoopPolicy(_BasePolicy): # type: ignore
+ """Event loop policy that allows loop creation on any thread.
+ Usage::
+
+ asyncio.set_event_loop_policy(AnyThreadEventLoopPolicy())
+ """
+
+ def get_event_loop(self) -> asyncio.AbstractEventLoop:
+ try:
+ return super().get_event_loop()
+ except (RuntimeError, AssertionError):
+ # This was an AssertionError in python 3.4.2 (which ships with debian jessie)
+ # and changed to a RuntimeError in 3.4.3.
+ # "There is no current event loop in thread %r"
+ loop = self.new_event_loop()
+ self.set_event_loop(loop)
+ return loop
+
+ asyncio.set_event_loop_policy(AnyThreadEventLoopPolicy())
+
+
def check_versions():
if shared.cmd_opts.skip_version_check:
return
- expected_torch_version = "1.13.1"
+ expected_torch_version = "2.0.0"
if version.parse(torch.__version__) < version.parse(expected_torch_version):
errors.print_error_explanation(f"""
@@ -68,7 +128,7 @@ there are reports of issues with training tab on the latest version.
Use --skip-version-check commandline argument to disable this check.
""".strip())
- expected_xformers_version = "0.0.16rc425"
+ expected_xformers_version = "0.0.17"
if shared.xformers_available:
import xformers
@@ -83,10 +143,26 @@ Use --skip-version-check commandline argument to disable this check.
def initialize():
+ fix_asyncio_event_loop_policy()
+
check_versions()
extensions.list_extensions()
localization.list_localizations(cmd_opts.localizations_dir)
+ startup_timer.record("list extensions")
+
+ config_state_file = shared.opts.restore_config_state_file
+ shared.opts.restore_config_state_file = ""
+ shared.opts.save(shared.config_filename)
+
+ if os.path.isfile(config_state_file):
+ print(f"*** About to restore extension state from file: {config_state_file}")
+ with open(config_state_file, "r", encoding="utf-8") as f:
+ config_state = json.load(f)
+ config_states.restore_extension_config(config_state)
+ startup_timer.record("restore extension config")
+ elif config_state_file:
+ print(f"!!! Config state backup not found: {config_state_file}")
if cmd_opts.ui_debug_mode:
shared.sd_upscalers = upscaler.UpscalerLanczos().scalers
@@ -95,17 +171,25 @@ def initialize():
modelloader.cleanup_models()
modules.sd_models.setup_model()
+ startup_timer.record("list SD models")
+
codeformer.setup_model(cmd_opts.codeformer_models_path)
+ startup_timer.record("setup codeformer")
+
gfpgan.setup_model(cmd_opts.gfpgan_models_path)
- shared.face_restorers.append(modules.face_restoration.FaceRestoration())
+ startup_timer.record("setup gfpgan")
modelloader.list_builtin_upscalers()
+ startup_timer.record("list builtin upscalers")
+
modules.scripts.load_scripts()
- modelloader.load_upscalers()
+ startup_timer.record("load scripts")
modules.sd_vae.refresh_vae_list()
+ startup_timer.record("refresh VAE")
modules.textual_inversion.textual_inversion.list_textual_inversion_templates()
+ startup_timer.record("refresh textual inversion templates")
try:
modules.sd_models.load_model()
@@ -114,6 +198,7 @@ def initialize():
print("", file=sys.stderr)
print("Stable diffusion model failed to load, exiting", file=sys.stderr)
exit(1)
+ startup_timer.record("load SD checkpoint")
shared.opts.data["sd_model_checkpoint"] = shared.sd_model.sd_checkpoint_info.title
@@ -121,8 +206,11 @@ def initialize():
shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
shared.opts.onchange("sd_vae_as_default", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
shared.opts.onchange("temp_dir", ui_tempdir.on_tmpdir_changed)
+ shared.opts.onchange("gradio_theme", shared.reload_gradio_theme)
+ startup_timer.record("opts onchange")
shared.reload_hypernetworks()
+ startup_timer.record("reload hypernets")
ui_extra_networks.intialize()
ui_extra_networks.register_page(ui_extra_networks_textual_inversion.ExtraNetworksPageTextualInversion())
@@ -131,6 +219,7 @@ def initialize():
extra_networks.initialize()
extra_networks.register_extra_network(extra_networks_hypernet.ExtraNetworkHypernet())
+ startup_timer.record("extra networks")
if cmd_opts.tls_keyfile is not None and cmd_opts.tls_keyfile is not None:
@@ -144,6 +233,7 @@ def initialize():
print("TLS setup invalid, running webui without TLS")
else:
print("Running with TLS")
+ startup_timer.record("TLS")
# make the program just exit at ctrl+c without waiting for anything
def sigint_handler(sig, frame):
@@ -153,13 +243,16 @@ def initialize():
signal.signal(signal.SIGINT, sigint_handler)
-def setup_cors(app):
+def setup_middleware(app):
+ app.middleware_stack = None # reset current middleware to allow modifying user provided list
+ app.add_middleware(GZipMiddleware, minimum_size=1000)
if cmd_opts.cors_allow_origins and cmd_opts.cors_allow_origins_regex:
app.add_middleware(CORSMiddleware, allow_origins=cmd_opts.cors_allow_origins.split(','), allow_origin_regex=cmd_opts.cors_allow_origins_regex, allow_methods=['*'], allow_credentials=True, allow_headers=['*'])
elif cmd_opts.cors_allow_origins:
app.add_middleware(CORSMiddleware, allow_origins=cmd_opts.cors_allow_origins.split(','), allow_methods=['*'], allow_credentials=True, allow_headers=['*'])
elif cmd_opts.cors_allow_origins_regex:
app.add_middleware(CORSMiddleware, allow_origin_regex=cmd_opts.cors_allow_origins_regex, allow_methods=['*'], allow_credentials=True, allow_headers=['*'])
+ app.build_middleware_stack() # rebuild middleware stack on-the-fly
def create_api(app):
@@ -185,12 +278,12 @@ def api_only():
initialize()
app = FastAPI()
- setup_cors(app)
- app.add_middleware(GZipMiddleware, minimum_size=1000)
+ setup_middleware(app)
api = create_api(app)
modules.script_callbacks.app_started_callback(None, app)
+ print(f"Startup time: {startup_timer.summary()}.")
api.launch(server_name="0.0.0.0" if cmd_opts.listen else "127.0.0.1", port=cmd_opts.port if cmd_opts.port else 7861)
@@ -201,14 +294,25 @@ def webui():
while 1:
if shared.opts.clean_temp_dir_at_start:
ui_tempdir.cleanup_tmpdr()
+ startup_timer.record("cleanup temp dir")
modules.script_callbacks.before_ui_callback()
+ startup_timer.record("scripts before_ui_callback")
shared.demo = modules.ui.create_ui()
+ startup_timer.record("create ui")
- if cmd_opts.gradio_queue:
+ if not cmd_opts.no_gradio_queue:
shared.demo.queue(64)
+ gradio_auth_creds = []
+ if cmd_opts.gradio_auth:
+ gradio_auth_creds += [x.strip() for x in cmd_opts.gradio_auth.strip('"').replace('\n', '').split(',') if x.strip()]
+ if cmd_opts.gradio_auth_path:
+ with open(cmd_opts.gradio_auth_path, 'r', encoding="utf8") as file:
+ for line in file.readlines():
+ gradio_auth_creds += [x.strip() for x in line.split(',') if x.strip()]
+
app, local_url, share_url = shared.demo.launch(
share=cmd_opts.share,
server_name=server_name,
@@ -216,22 +320,22 @@ def webui():
ssl_keyfile=cmd_opts.tls_keyfile,
ssl_certfile=cmd_opts.tls_certfile,
debug=cmd_opts.gradio_debug,
- auth=[tuple(cred.split(':')) for cred in cmd_opts.gradio_auth.strip('"').split(',')] if cmd_opts.gradio_auth else None,
+ auth=[tuple(cred.split(':')) for cred in gradio_auth_creds] if gradio_auth_creds else None,
inbrowser=cmd_opts.autolaunch,
prevent_thread_lock=True
)
# after initial launch, disable --autolaunch for subsequent restarts
cmd_opts.autolaunch = False
+ startup_timer.record("gradio launch")
+
# gradio uses a very open CORS policy via app.user_middleware, which makes it possible for
# an attacker to trick the user into opening a malicious HTML page, which makes a request to the
# running web ui and do whatever the attacker wants, including installing an extension and
# running its code. We disable this here. Suggested by RyotaK.
app.user_middleware = [x for x in app.user_middleware if x.cls.__name__ != 'CORSMiddleware']
- setup_cors(app)
-
- app.add_middleware(GZipMiddleware, minimum_size=1000)
+ setup_middleware(app)
modules.progress.setup_progress_api(app)
@@ -241,28 +345,55 @@ def webui():
ui_extra_networks.add_pages_to_demo(app)
modules.script_callbacks.app_started_callback(shared.demo, app)
+ startup_timer.record("scripts app_started_callback")
+
+ print(f"Startup time: {startup_timer.summary()}.")
wait_on_server(shared.demo)
print('Restarting UI...')
+ startup_timer.reset()
+
sd_samplers.set_samplers()
modules.script_callbacks.script_unloaded_callback()
extensions.list_extensions()
+ startup_timer.record("list extensions")
+
+ config_state_file = shared.opts.restore_config_state_file
+ shared.opts.restore_config_state_file = ""
+ shared.opts.save(shared.config_filename)
+
+ if os.path.isfile(config_state_file):
+ print(f"*** About to restore extension state from file: {config_state_file}")
+ with open(config_state_file, "r", encoding="utf-8") as f:
+ config_state = json.load(f)
+ config_states.restore_extension_config(config_state)
+ startup_timer.record("restore extension config")
+ elif config_state_file:
+ print(f"!!! Config state backup not found: {config_state_file}")
localization.list_localizations(cmd_opts.localizations_dir)
modelloader.forbid_loaded_nonbuiltin_upscalers()
modules.scripts.reload_scripts()
+ startup_timer.record("load scripts")
+
modules.script_callbacks.model_loaded_callback(shared.sd_model)
+ startup_timer.record("model loaded callback")
+
modelloader.load_upscalers()
+ startup_timer.record("load upscalers")
for module in [module for name, module in sys.modules.items() if name.startswith("modules.ui")]:
importlib.reload(module)
+ startup_timer.record("reload script modules")
modules.sd_models.list_models()
+ startup_timer.record("list SD models")
shared.reload_hypernetworks()
+ startup_timer.record("reload hypernetworks")
ui_extra_networks.intialize()
ui_extra_networks.register_page(ui_extra_networks_textual_inversion.ExtraNetworksPageTextualInversion())
@@ -271,6 +402,7 @@ def webui():
extra_networks.initialize()
extra_networks.register_extra_network(extra_networks_hypernet.ExtraNetworkHypernet())
+ startup_timer.record("initialize extra networks")
if __name__ == "__main__":
diff --git a/webui.sh b/webui.sh
index 8cdad22d..3e069371 100755
--- a/webui.sh
+++ b/webui.sh
@@ -23,7 +23,7 @@ fi
# Install directory without trailing slash
if [[ -z "${install_dir}" ]]
then
- install_dir="/home/$(whoami)"
+ install_dir="$(pwd)"
fi
# Name of the subdirectory (defaults to stable-diffusion-webui)
@@ -113,12 +113,13 @@ case "$gpu_info" in
printf "Experimental support for Renoir: make sure to have at least 4GB of VRAM and 10GB of RAM or enable cpu mode: --use-cpu all --no-half"
printf "\n%s\n" "${delimiter}"
;;
- *)
+ *)
;;
esac
if echo "$gpu_info" | grep -q "AMD" && [[ -z "${TORCH_COMMAND}" ]]
then
- export TORCH_COMMAND="pip install torch torchvision --extra-index-url https://download.pytorch.org/whl/rocm5.2"
+ # AMD users will still use torch 1.13 because 2.0 does not seem to work.
+ export TORCH_COMMAND="pip install torch==1.13.1+rocm5.2 torchvision==0.14.1+rocm5.2 --index-url https://download.pytorch.org/whl/rocm5.2"
fi
for preq in "${GIT}" "${python_cmd}"
@@ -172,15 +173,30 @@ else
exit 1
fi
+# Try using TCMalloc on Linux
+prepare_tcmalloc() {
+ if [[ "${OSTYPE}" == "linux"* ]] && [[ -z "${NO_TCMALLOC}" ]] && [[ -z "${LD_PRELOAD}" ]]; then
+ TCMALLOC="$(ldconfig -p | grep -Po "libtcmalloc.so.\d" | head -n 1)"
+ if [[ ! -z "${TCMALLOC}" ]]; then
+ echo "Using TCMalloc: ${TCMALLOC}"
+ export LD_PRELOAD="${TCMALLOC}"
+ else
+ printf "\e[1m\e[31mCannot locate TCMalloc (improves CPU memory usage)\e[0m\n"
+ fi
+ fi
+}
+
if [[ ! -z "${ACCELERATE}" ]] && [ ${ACCELERATE}="True" ] && [ -x "$(command -v accelerate)" ]
then
printf "\n%s\n" "${delimiter}"
printf "Accelerating launch.py..."
printf "\n%s\n" "${delimiter}"
+ prepare_tcmalloc
exec accelerate launch --num_cpu_threads_per_process=6 "${LAUNCH_SCRIPT}" "$@"
else
printf "\n%s\n" "${delimiter}"
printf "Launching launch.py..."
- printf "\n%s\n" "${delimiter}"
+ printf "\n%s\n" "${delimiter}"
+ prepare_tcmalloc
exec "${python_cmd}" "${LAUNCH_SCRIPT}" "$@"
fi