aboutsummaryrefslogtreecommitdiffstats
path: root/extensions-builtin/Lora/network_oft.py
diff options
context:
space:
mode:
Diffstat (limited to 'extensions-builtin/Lora/network_oft.py')
-rw-r--r--extensions-builtin/Lora/network_oft.py10
1 files changed, 5 insertions, 5 deletions
diff --git a/extensions-builtin/Lora/network_oft.py b/extensions-builtin/Lora/network_oft.py
index fa647020..d1c46a4b 100644
--- a/extensions-builtin/Lora/network_oft.py
+++ b/extensions-builtin/Lora/network_oft.py
@@ -56,17 +56,17 @@ class NetworkModuleOFT(network.NetworkModule):
self.block_size, self.num_blocks = factorization(self.out_dim, self.dim)
def calc_updown(self, orig_weight):
- oft_blocks = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
- eye = torch.eye(self.block_size, device=self.oft_blocks.device)
+ oft_blocks = self.oft_blocks.to(orig_weight.device)
+ eye = torch.eye(self.block_size, device=oft_blocks.device)
if self.is_kohya:
block_Q = oft_blocks - oft_blocks.transpose(1, 2) # ensure skew-symmetric orthogonal matrix
norm_Q = torch.norm(block_Q.flatten())
- new_norm_Q = torch.clamp(norm_Q, max=self.constraint)
+ new_norm_Q = torch.clamp(norm_Q, max=self.constraint.to(oft_blocks.device))
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
oft_blocks = torch.matmul(eye + block_Q, (eye - block_Q).float().inverse())
- R = oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
+ R = oft_blocks.to(orig_weight.device)
# This errors out for MultiheadAttention, might need to be handled up-stream
merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
@@ -77,6 +77,6 @@ class NetworkModuleOFT(network.NetworkModule):
)
merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...')
- updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
+ updown = merged_weight.to(orig_weight.device) - orig_weight.to(merged_weight.dtype)
output_shape = orig_weight.shape
return self.finalize_updown(updown, orig_weight, output_shape)