diff options
Diffstat (limited to 'extensions-builtin')
-rw-r--r-- | extensions-builtin/LDSR/ldsr_model_arch.py | 9 | ||||
-rw-r--r-- | extensions-builtin/LDSR/scripts/ldsr_model.py | 23 | ||||
-rw-r--r-- | extensions-builtin/LDSR/sd_hijack_autoencoder.py | 28 | ||||
-rw-r--r-- | extensions-builtin/LDSR/sd_hijack_ddpm_v1.py | 60 | ||||
-rw-r--r-- | extensions-builtin/Lora/extra_networks_lora.py | 3 | ||||
-rw-r--r-- | extensions-builtin/Lora/lora.py | 135 | ||||
-rw-r--r-- | extensions-builtin/Lora/scripts/lora_script.py | 29 | ||||
-rw-r--r-- | extensions-builtin/Lora/ui_extra_networks_lora.py | 2 | ||||
-rw-r--r-- | extensions-builtin/ScuNET/scripts/scunet_model.py | 84 | ||||
-rw-r--r-- | extensions-builtin/ScuNET/scunet_model_arch.py | 9 | ||||
-rw-r--r-- | extensions-builtin/SwinIR/scripts/swinir_model.py | 5 | ||||
-rw-r--r-- | extensions-builtin/SwinIR/swinir_model_arch.py | 4 | ||||
-rw-r--r-- | extensions-builtin/SwinIR/swinir_model_arch_v2.py | 6 | ||||
-rw-r--r-- | extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js | 121 |
14 files changed, 315 insertions, 203 deletions
diff --git a/extensions-builtin/LDSR/ldsr_model_arch.py b/extensions-builtin/LDSR/ldsr_model_arch.py index bc11cc6e..2173de79 100644 --- a/extensions-builtin/LDSR/ldsr_model_arch.py +++ b/extensions-builtin/LDSR/ldsr_model_arch.py @@ -88,7 +88,7 @@ class LDSR: x_t = None logs = None - for n in range(n_runs): + for _ in range(n_runs): if custom_shape is not None: x_t = torch.randn(1, custom_shape[1], custom_shape[2], custom_shape[3]).to(model.device) x_t = repeat(x_t, '1 c h w -> b c h w', b=custom_shape[0]) @@ -110,7 +110,6 @@ class LDSR: diffusion_steps = int(steps) eta = 1.0 - down_sample_method = 'Lanczos' gc.collect() if torch.cuda.is_available: @@ -158,7 +157,7 @@ class LDSR: def get_cond(selected_path): - example = dict() + example = {} up_f = 4 c = selected_path.convert('RGB') c = torch.unsqueeze(torchvision.transforms.ToTensor()(c), 0) @@ -196,7 +195,7 @@ def convsample_ddim(model, cond, steps, shape, eta=1.0, callback=None, normals_s @torch.no_grad() def make_convolutional_sample(batch, model, custom_steps=None, eta=1.0, quantize_x0=False, custom_shape=None, temperature=1., noise_dropout=0., corrector=None, corrector_kwargs=None, x_T=None, ddim_use_x0_pred=False): - log = dict() + log = {} z, c, x, xrec, xc = model.get_input(batch, model.first_stage_key, return_first_stage_outputs=True, @@ -244,7 +243,7 @@ def make_convolutional_sample(batch, model, custom_steps=None, eta=1.0, quantize x_sample_noquant = model.decode_first_stage(sample, force_not_quantize=True) log["sample_noquant"] = x_sample_noquant log["sample_diff"] = torch.abs(x_sample_noquant - x_sample) - except: + except Exception: pass log["sample"] = x_sample diff --git a/extensions-builtin/LDSR/scripts/ldsr_model.py b/extensions-builtin/LDSR/scripts/ldsr_model.py index b8cff29b..fbbe9005 100644 --- a/extensions-builtin/LDSR/scripts/ldsr_model.py +++ b/extensions-builtin/LDSR/scripts/ldsr_model.py @@ -7,7 +7,8 @@ from basicsr.utils.download_util import load_file_from_url from modules.upscaler import Upscaler, UpscalerData from ldsr_model_arch import LDSR from modules import shared, script_callbacks -import sd_hijack_autoencoder, sd_hijack_ddpm_v1 +import sd_hijack_autoencoder # noqa: F401 +import sd_hijack_ddpm_v1 # noqa: F401 class UpscalerLDSR(Upscaler): @@ -25,22 +26,28 @@ class UpscalerLDSR(Upscaler): yaml_path = os.path.join(self.model_path, "project.yaml") old_model_path = os.path.join(self.model_path, "model.pth") new_model_path = os.path.join(self.model_path, "model.ckpt") - safetensors_model_path = os.path.join(self.model_path, "model.safetensors") + + local_model_paths = self.find_models(ext_filter=[".ckpt", ".safetensors"]) + local_ckpt_path = next(iter([local_model for local_model in local_model_paths if local_model.endswith("model.ckpt")]), None) + local_safetensors_path = next(iter([local_model for local_model in local_model_paths if local_model.endswith("model.safetensors")]), None) + local_yaml_path = next(iter([local_model for local_model in local_model_paths if local_model.endswith("project.yaml")]), None) + if os.path.exists(yaml_path): statinfo = os.stat(yaml_path) if statinfo.st_size >= 10485760: print("Removing invalid LDSR YAML file.") os.remove(yaml_path) + if os.path.exists(old_model_path): print("Renaming model from model.pth to model.ckpt") os.rename(old_model_path, new_model_path) - if os.path.exists(safetensors_model_path): - model = safetensors_model_path + + if local_safetensors_path is not None and os.path.exists(local_safetensors_path): + model = local_safetensors_path else: - model = load_file_from_url(url=self.model_url, model_dir=self.model_path, - file_name="model.ckpt", progress=True) - yaml = load_file_from_url(url=self.yaml_url, model_dir=self.model_path, - file_name="project.yaml", progress=True) + model = local_ckpt_path if local_ckpt_path is not None else load_file_from_url(url=self.model_url, model_dir=self.model_path, file_name="model.ckpt", progress=True) + + yaml = local_yaml_path if local_yaml_path is not None else load_file_from_url(url=self.yaml_url, model_dir=self.model_path, file_name="project.yaml", progress=True) try: return LDSR(model, yaml) diff --git a/extensions-builtin/LDSR/sd_hijack_autoencoder.py b/extensions-builtin/LDSR/sd_hijack_autoencoder.py index 8e03c7f8..81c5101b 100644 --- a/extensions-builtin/LDSR/sd_hijack_autoencoder.py +++ b/extensions-builtin/LDSR/sd_hijack_autoencoder.py @@ -1,16 +1,21 @@ # The content of this file comes from the ldm/models/autoencoder.py file of the compvis/stable-diffusion repo # The VQModel & VQModelInterface were subsequently removed from ldm/models/autoencoder.py when we moved to the stability-ai/stablediffusion repo # As the LDSR upscaler relies on VQModel & VQModelInterface, the hijack aims to put them back into the ldm.models.autoencoder - +import numpy as np import torch import pytorch_lightning as pl import torch.nn.functional as F from contextlib import contextmanager + +from torch.optim.lr_scheduler import LambdaLR + +from ldm.modules.ema import LitEma from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer from ldm.modules.diffusionmodules.model import Encoder, Decoder from ldm.util import instantiate_from_config import ldm.models.autoencoder +from packaging import version class VQModel(pl.LightningModule): def __init__(self, @@ -19,7 +24,7 @@ class VQModel(pl.LightningModule): n_embed, embed_dim, ckpt_path=None, - ignore_keys=[], + ignore_keys=None, image_key="image", colorize_nlabels=None, monitor=None, @@ -57,7 +62,7 @@ class VQModel(pl.LightningModule): print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) + self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys or []) self.scheduler_config = scheduler_config self.lr_g_factor = lr_g_factor @@ -76,11 +81,11 @@ class VQModel(pl.LightningModule): if context is not None: print(f"{context}: Restored training weights") - def init_from_ckpt(self, path, ignore_keys=list()): + def init_from_ckpt(self, path, ignore_keys=None): sd = torch.load(path, map_location="cpu")["state_dict"] keys = list(sd.keys()) for k in keys: - for ik in ignore_keys: + for ik in ignore_keys or []: if k.startswith(ik): print("Deleting key {} from state_dict.".format(k)) del sd[k] @@ -165,7 +170,7 @@ class VQModel(pl.LightningModule): def validation_step(self, batch, batch_idx): log_dict = self._validation_step(batch, batch_idx) with self.ema_scope(): - log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema") + self._validation_step(batch, batch_idx, suffix="_ema") return log_dict def _validation_step(self, batch, batch_idx, suffix=""): @@ -232,7 +237,7 @@ class VQModel(pl.LightningModule): return self.decoder.conv_out.weight def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs): - log = dict() + log = {} x = self.get_input(batch, self.image_key) x = x.to(self.device) if only_inputs: @@ -249,7 +254,8 @@ class VQModel(pl.LightningModule): if plot_ema: with self.ema_scope(): xrec_ema, _ = self(x) - if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema) + if x.shape[1] > 3: + xrec_ema = self.to_rgb(xrec_ema) log["reconstructions_ema"] = xrec_ema return log @@ -264,7 +270,7 @@ class VQModel(pl.LightningModule): class VQModelInterface(VQModel): def __init__(self, embed_dim, *args, **kwargs): - super().__init__(embed_dim=embed_dim, *args, **kwargs) + super().__init__(*args, embed_dim=embed_dim, **kwargs) self.embed_dim = embed_dim def encode(self, x): @@ -282,5 +288,5 @@ class VQModelInterface(VQModel): dec = self.decoder(quant) return dec -setattr(ldm.models.autoencoder, "VQModel", VQModel) -setattr(ldm.models.autoencoder, "VQModelInterface", VQModelInterface) +ldm.models.autoencoder.VQModel = VQModel +ldm.models.autoencoder.VQModelInterface = VQModelInterface diff --git a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py index 5c0488e5..57c02d12 100644 --- a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py +++ b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py @@ -48,7 +48,7 @@ class DDPMV1(pl.LightningModule): beta_schedule="linear", loss_type="l2", ckpt_path=None, - ignore_keys=[], + ignore_keys=None, load_only_unet=False, monitor="val/loss", use_ema=True, @@ -100,7 +100,7 @@ class DDPMV1(pl.LightningModule): if monitor is not None: self.monitor = monitor if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet) + self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys or [], only_model=load_only_unet) self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) @@ -182,13 +182,13 @@ class DDPMV1(pl.LightningModule): if context is not None: print(f"{context}: Restored training weights") - def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): + def init_from_ckpt(self, path, ignore_keys=None, only_model=False): sd = torch.load(path, map_location="cpu") if "state_dict" in list(sd.keys()): sd = sd["state_dict"] keys = list(sd.keys()) for k in keys: - for ik in ignore_keys: + for ik in ignore_keys or []: if k.startswith(ik): print("Deleting key {} from state_dict.".format(k)) del sd[k] @@ -375,7 +375,7 @@ class DDPMV1(pl.LightningModule): @torch.no_grad() def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs): - log = dict() + log = {} x = self.get_input(batch, self.first_stage_key) N = min(x.shape[0], N) n_row = min(x.shape[0], n_row) @@ -383,7 +383,7 @@ class DDPMV1(pl.LightningModule): log["inputs"] = x # get diffusion row - diffusion_row = list() + diffusion_row = [] x_start = x[:n_row] for t in range(self.num_timesteps): @@ -444,13 +444,13 @@ class LatentDiffusionV1(DDPMV1): conditioning_key = None ckpt_path = kwargs.pop("ckpt_path", None) ignore_keys = kwargs.pop("ignore_keys", []) - super().__init__(conditioning_key=conditioning_key, *args, **kwargs) + super().__init__(*args, conditioning_key=conditioning_key, **kwargs) self.concat_mode = concat_mode self.cond_stage_trainable = cond_stage_trainable self.cond_stage_key = cond_stage_key try: self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 - except: + except Exception: self.num_downs = 0 if not scale_by_std: self.scale_factor = scale_factor @@ -877,16 +877,6 @@ class LatentDiffusionV1(DDPMV1): c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float())) return self.p_losses(x, c, t, *args, **kwargs) - def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset - def rescale_bbox(bbox): - x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2]) - y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3]) - w = min(bbox[2] / crop_coordinates[2], 1 - x0) - h = min(bbox[3] / crop_coordinates[3], 1 - y0) - return x0, y0, w, h - - return [rescale_bbox(b) for b in bboxes] - def apply_model(self, x_noisy, t, cond, return_ids=False): if isinstance(cond, dict): @@ -1126,7 +1116,7 @@ class LatentDiffusionV1(DDPMV1): if cond is not None: if isinstance(cond, dict): cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else - list(map(lambda x: x[:batch_size], cond[key])) for key in cond} + [x[:batch_size] for x in cond[key]] for key in cond} else: cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] @@ -1157,8 +1147,10 @@ class LatentDiffusionV1(DDPMV1): if i % log_every_t == 0 or i == timesteps - 1: intermediates.append(x0_partial) - if callback: callback(i) - if img_callback: img_callback(img, i) + if callback: + callback(i) + if img_callback: + img_callback(img, i) return img, intermediates @torch.no_grad() @@ -1205,8 +1197,10 @@ class LatentDiffusionV1(DDPMV1): if i % log_every_t == 0 or i == timesteps - 1: intermediates.append(img) - if callback: callback(i) - if img_callback: img_callback(img, i) + if callback: + callback(i) + if img_callback: + img_callback(img, i) if return_intermediates: return img, intermediates @@ -1221,7 +1215,7 @@ class LatentDiffusionV1(DDPMV1): if cond is not None: if isinstance(cond, dict): cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else - list(map(lambda x: x[:batch_size], cond[key])) for key in cond} + [x[:batch_size] for x in cond[key]] for key in cond} else: cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] return self.p_sample_loop(cond, @@ -1253,7 +1247,7 @@ class LatentDiffusionV1(DDPMV1): use_ddim = ddim_steps is not None - log = dict() + log = {} z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, return_first_stage_outputs=True, force_c_encode=True, @@ -1280,7 +1274,7 @@ class LatentDiffusionV1(DDPMV1): if plot_diffusion_rows: # get diffusion row - diffusion_row = list() + diffusion_row = [] z_start = z[:n_row] for t in range(self.num_timesteps): if t % self.log_every_t == 0 or t == self.num_timesteps - 1: @@ -1322,7 +1316,7 @@ class LatentDiffusionV1(DDPMV1): if inpaint: # make a simple center square - b, h, w = z.shape[0], z.shape[2], z.shape[3] + h, w = z.shape[2], z.shape[3] mask = torch.ones(N, h, w).to(self.device) # zeros will be filled in mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0. @@ -1424,10 +1418,10 @@ class Layout2ImgDiffusionV1(LatentDiffusionV1): # TODO: move all layout-specific hacks to this class def __init__(self, cond_stage_key, *args, **kwargs): assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"' - super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs) + super().__init__(*args, cond_stage_key=cond_stage_key, **kwargs) def log_images(self, batch, N=8, *args, **kwargs): - logs = super().log_images(batch=batch, N=N, *args, **kwargs) + logs = super().log_images(*args, batch=batch, N=N, **kwargs) key = 'train' if self.training else 'validation' dset = self.trainer.datamodule.datasets[key] @@ -1443,7 +1437,7 @@ class Layout2ImgDiffusionV1(LatentDiffusionV1): logs['bbox_image'] = cond_img return logs -setattr(ldm.models.diffusion.ddpm, "DDPMV1", DDPMV1) -setattr(ldm.models.diffusion.ddpm, "LatentDiffusionV1", LatentDiffusionV1) -setattr(ldm.models.diffusion.ddpm, "DiffusionWrapperV1", DiffusionWrapperV1) -setattr(ldm.models.diffusion.ddpm, "Layout2ImgDiffusionV1", Layout2ImgDiffusionV1) +ldm.models.diffusion.ddpm.DDPMV1 = DDPMV1 +ldm.models.diffusion.ddpm.LatentDiffusionV1 = LatentDiffusionV1 +ldm.models.diffusion.ddpm.DiffusionWrapperV1 = DiffusionWrapperV1 +ldm.models.diffusion.ddpm.Layout2ImgDiffusionV1 = Layout2ImgDiffusionV1 diff --git a/extensions-builtin/Lora/extra_networks_lora.py b/extensions-builtin/Lora/extra_networks_lora.py index 6be6ef73..ccb249ac 100644 --- a/extensions-builtin/Lora/extra_networks_lora.py +++ b/extensions-builtin/Lora/extra_networks_lora.py @@ -1,6 +1,7 @@ from modules import extra_networks, shared
import lora
+
class ExtraNetworkLora(extra_networks.ExtraNetwork):
def __init__(self):
super().__init__('lora')
@@ -8,7 +9,7 @@ class ExtraNetworkLora(extra_networks.ExtraNetwork): def activate(self, p, params_list):
additional = shared.opts.sd_lora
- if additional != "" and additional in lora.available_loras and len([x for x in params_list if x.items[0] == additional]) == 0:
+ if additional != "None" and additional in lora.available_loras and len([x for x in params_list if x.items[0] == additional]) == 0:
p.all_prompts = [x + f"<lora:{additional}:{shared.opts.extra_networks_default_multiplier}>" for x in p.all_prompts]
params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier]))
diff --git a/extensions-builtin/Lora/lora.py b/extensions-builtin/Lora/lora.py index d3eb0d3b..7b56136f 100644 --- a/extensions-builtin/Lora/lora.py +++ b/extensions-builtin/Lora/lora.py @@ -1,10 +1,9 @@ -import glob
import os
import re
import torch
from typing import Union
-from modules import shared, devices, sd_models, errors
+from modules import shared, devices, sd_models, errors, scripts
metadata_tags_order = {"ss_sd_model_name": 1, "ss_resolution": 2, "ss_clip_skip": 3, "ss_num_train_images": 10, "ss_tag_frequency": 20}
@@ -93,6 +92,7 @@ class LoraOnDisk: self.metadata = m
self.ssmd_cover_images = self.metadata.pop('ssmd_cover_images', None) # those are cover images and they are too big to display in UI as text
+ self.alias = self.metadata.get('ss_output_name', self.name)
class LoraModule:
@@ -165,12 +165,14 @@ def load_lora(name, filename): module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
elif type(sd_module) == torch.nn.MultiheadAttention:
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
- elif type(sd_module) == torch.nn.Conv2d:
+ elif type(sd_module) == torch.nn.Conv2d and weight.shape[2:] == (1, 1):
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
+ elif type(sd_module) == torch.nn.Conv2d and weight.shape[2:] == (3, 3):
+ module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (3, 3), bias=False)
else:
print(f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}')
continue
- assert False, f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}'
+ raise AssertionError(f"Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}")
with torch.no_grad():
module.weight.copy_(weight)
@@ -182,7 +184,7 @@ def load_lora(name, filename): elif lora_key == "lora_down.weight":
lora_module.down = module
else:
- assert False, f'Bad Lora layer name: {key_diffusers} - must end in lora_up.weight, lora_down.weight or alpha'
+ raise AssertionError(f"Bad Lora layer name: {key_diffusers} - must end in lora_up.weight, lora_down.weight or alpha")
if len(keys_failed_to_match) > 0:
print(f"Failed to match keys when loading Lora {filename}: {keys_failed_to_match}")
@@ -199,11 +201,11 @@ def load_loras(names, multipliers=None): loaded_loras.clear()
- loras_on_disk = [available_loras.get(name, None) for name in names]
- if any([x is None for x in loras_on_disk]):
+ loras_on_disk = [available_lora_aliases.get(name, None) for name in names]
+ if any(x is None for x in loras_on_disk):
list_available_loras()
- loras_on_disk = [available_loras.get(name, None) for name in names]
+ loras_on_disk = [available_lora_aliases.get(name, None) for name in names]
for i, name in enumerate(names):
lora = already_loaded.get(name, None)
@@ -211,7 +213,11 @@ def load_loras(names, multipliers=None): lora_on_disk = loras_on_disk[i]
if lora_on_disk is not None:
if lora is None or os.path.getmtime(lora_on_disk.filename) > lora.mtime:
- lora = load_lora(name, lora_on_disk.filename)
+ try:
+ lora = load_lora(name, lora_on_disk.filename)
+ except Exception as e:
+ errors.display(e, f"loading Lora {lora_on_disk.filename}")
+ continue
if lora is None:
print(f"Couldn't find Lora with name {name}")
@@ -228,6 +234,8 @@ def lora_calc_updown(lora, module, target): if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1):
updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3)
+ elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3):
+ updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3)
else:
updown = up @ down
@@ -236,6 +244,19 @@ def lora_calc_updown(lora, module, target): return updown
+def lora_restore_weights_from_backup(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]):
+ weights_backup = getattr(self, "lora_weights_backup", None)
+
+ if weights_backup is None:
+ return
+
+ if isinstance(self, torch.nn.MultiheadAttention):
+ self.in_proj_weight.copy_(weights_backup[0])
+ self.out_proj.weight.copy_(weights_backup[1])
+ else:
+ self.weight.copy_(weights_backup)
+
+
def lora_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]):
"""
Applies the currently selected set of Loras to the weights of torch layer self.
@@ -260,12 +281,7 @@ def lora_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.Mu self.lora_weights_backup = weights_backup
if current_names != wanted_names:
- if weights_backup is not None:
- if isinstance(self, torch.nn.MultiheadAttention):
- self.in_proj_weight.copy_(weights_backup[0])
- self.out_proj.weight.copy_(weights_backup[1])
- else:
- self.weight.copy_(weights_backup)
+ lora_restore_weights_from_backup(self)
for lora in loaded_loras:
module = lora.modules.get(lora_layer_name, None)
@@ -293,15 +309,48 @@ def lora_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.Mu print(f'failed to calculate lora weights for layer {lora_layer_name}')
- setattr(self, "lora_current_names", wanted_names)
+ self.lora_current_names = wanted_names
+
+
+def lora_forward(module, input, original_forward):
+ """
+ Old way of applying Lora by executing operations during layer's forward.
+ Stacking many loras this way results in big performance degradation.
+ """
+
+ if len(loaded_loras) == 0:
+ return original_forward(module, input)
+
+ input = devices.cond_cast_unet(input)
+
+ lora_restore_weights_from_backup(module)
+ lora_reset_cached_weight(module)
+
+ res = original_forward(module, input)
+
+ lora_layer_name = getattr(module, 'lora_layer_name', None)
+ for lora in loaded_loras:
+ module = lora.modules.get(lora_layer_name, None)
+ if module is None:
+ continue
+
+ module.up.to(device=devices.device)
+ module.down.to(device=devices.device)
+
+ res = res + module.up(module.down(input)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)
+
+ return res
def lora_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]):
- setattr(self, "lora_current_names", ())
- setattr(self, "lora_weights_backup", None)
+ self.lora_current_names = ()
+ self.lora_weights_backup = None
def lora_Linear_forward(self, input):
+ if shared.opts.lora_functional:
+ return lora_forward(self, input, torch.nn.Linear_forward_before_lora)
+
lora_apply_weights(self)
return torch.nn.Linear_forward_before_lora(self, input)
@@ -314,6 +363,9 @@ def lora_Linear_load_state_dict(self, *args, **kwargs): def lora_Conv2d_forward(self, input):
+ if shared.opts.lora_functional:
+ return lora_forward(self, input, torch.nn.Conv2d_forward_before_lora)
+
lora_apply_weights(self)
return torch.nn.Conv2d_forward_before_lora(self, input)
@@ -339,24 +391,59 @@ def lora_MultiheadAttention_load_state_dict(self, *args, **kwargs): def list_available_loras():
available_loras.clear()
+ available_lora_aliases.clear()
os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True)
- candidates = \
- glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.pt'), recursive=True) + \
- glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.safetensors'), recursive=True) + \
- glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.ckpt'), recursive=True)
-
+ candidates = list(shared.walk_files(shared.cmd_opts.lora_dir, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
for filename in sorted(candidates, key=str.lower):
if os.path.isdir(filename):
continue
name = os.path.splitext(os.path.basename(filename))[0]
+ entry = LoraOnDisk(name, filename)
+
+ available_loras[name] = entry
+
+ available_lora_aliases[name] = entry
+ available_lora_aliases[entry.alias] = entry
+
+
+re_lora_name = re.compile(r"(.*)\s*\([0-9a-fA-F]+\)")
+
+
+def infotext_pasted(infotext, params):
+ if "AddNet Module 1" in [x[1] for x in scripts.scripts_txt2img.infotext_fields]:
+ return # if the other extension is active, it will handle those fields, no need to do anything
+
+ added = []
+
+ for k in params:
+ if not k.startswith("AddNet Model "):
+ continue
+
+ num = k[13:]
+
+ if params.get("AddNet Module " + num) != "LoRA":
+ continue
+
+ name = params.get("AddNet Model " + num)
+ if name is None:
+ continue
+
+ m = re_lora_name.match(name)
+ if m:
+ name = m.group(1)
+
+ multiplier = params.get("AddNet Weight A " + num, "1.0")
- available_loras[name] = LoraOnDisk(name, filename)
+ added.append(f"<lora:{name}:{multiplier}>")
+ if added:
+ params["Prompt"] += "\n" + "".join(added)
available_loras = {}
+available_lora_aliases = {}
loaded_loras = []
list_available_loras()
diff --git a/extensions-builtin/Lora/scripts/lora_script.py b/extensions-builtin/Lora/scripts/lora_script.py index 0adab225..13d297d7 100644 --- a/extensions-builtin/Lora/scripts/lora_script.py +++ b/extensions-builtin/Lora/scripts/lora_script.py @@ -1,12 +1,12 @@ import torch
import gradio as gr
+from fastapi import FastAPI
import lora
import extra_networks_lora
import ui_extra_networks_lora
from modules import script_callbacks, ui_extra_networks, extra_networks, shared
-
def unload():
torch.nn.Linear.forward = torch.nn.Linear_forward_before_lora
torch.nn.Linear._load_from_state_dict = torch.nn.Linear_load_state_dict_before_lora
@@ -49,8 +49,33 @@ torch.nn.MultiheadAttention._load_from_state_dict = lora.lora_MultiheadAttention script_callbacks.on_model_loaded(lora.assign_lora_names_to_compvis_modules)
script_callbacks.on_script_unloaded(unload)
script_callbacks.on_before_ui(before_ui)
+script_callbacks.on_infotext_pasted(lora.infotext_pasted)
shared.options_templates.update(shared.options_section(('extra_networks', "Extra Networks"), {
- "sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": [""] + [x for x in lora.available_loras]}, refresh=lora.list_available_loras),
+ "sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": ["None", *lora.available_loras]}, refresh=lora.list_available_loras),
+}))
+
+
+shared.options_templates.update(shared.options_section(('compatibility', "Compatibility"), {
+ "lora_functional": shared.OptionInfo(False, "Lora: use old method that takes longer when you have multiple Loras active and produces same results as kohya-ss/sd-webui-additional-networks extension"),
}))
+
+
+def create_lora_json(obj: lora.LoraOnDisk):
+ return {
+ "name": obj.name,
+ "alias": obj.alias,
+ "path": obj.filename,
+ "metadata": obj.metadata,
+ }
+
+
+def api_loras(_: gr.Blocks, app: FastAPI):
+ @app.get("/sdapi/v1/loras")
+ async def get_loras():
+ return [create_lora_json(obj) for obj in lora.available_loras.values()]
+
+
+script_callbacks.on_app_started(api_loras)
+
diff --git a/extensions-builtin/Lora/ui_extra_networks_lora.py b/extensions-builtin/Lora/ui_extra_networks_lora.py index 68b11332..a0edbc1e 100644 --- a/extensions-builtin/Lora/ui_extra_networks_lora.py +++ b/extensions-builtin/Lora/ui_extra_networks_lora.py @@ -21,7 +21,7 @@ class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage): "preview": self.find_preview(path),
"description": self.find_description(path),
"search_term": self.search_terms_from_path(lora_on_disk.filename),
- "prompt": json.dumps(f"<lora:{name}:") + " + opts.extra_networks_default_multiplier + " + json.dumps(">"),
+ "prompt": json.dumps(f"<lora:{lora_on_disk.alias}:") + " + opts.extra_networks_default_multiplier + " + json.dumps(">"),
"local_preview": f"{path}.{shared.opts.samples_format}",
"metadata": json.dumps(lora_on_disk.metadata, indent=4) if lora_on_disk.metadata else None,
}
diff --git a/extensions-builtin/ScuNET/scripts/scunet_model.py b/extensions-builtin/ScuNET/scripts/scunet_model.py index e0fbf3a3..1f5ea0d3 100644 --- a/extensions-builtin/ScuNET/scripts/scunet_model.py +++ b/extensions-builtin/ScuNET/scripts/scunet_model.py @@ -5,11 +5,14 @@ import traceback import PIL.Image import numpy as np import torch +from tqdm import tqdm + from basicsr.utils.download_util import load_file_from_url import modules.upscaler from modules import devices, modelloader from scunet_model_arch import SCUNet as net +from modules.shared import opts class UpscalerScuNET(modules.upscaler.Upscaler): @@ -42,28 +45,78 @@ class UpscalerScuNET(modules.upscaler.Upscaler): scalers.append(scaler_data2) self.scalers = scalers - def do_upscale(self, img: PIL.Image, selected_file): + @staticmethod + @torch.no_grad() + def tiled_inference(img, model): + # test the image tile by tile + h, w = img.shape[2:] + tile = opts.SCUNET_tile + tile_overlap = opts.SCUNET_tile_overlap + if tile == 0: + return model(img) + + device = devices.get_device_for('scunet') + assert tile % 8 == 0, "tile size should be a multiple of window_size" + sf = 1 + + stride = tile - tile_overlap + h_idx_list = list(range(0, h - tile, stride)) + [h - tile] + w_idx_list = list(range(0, w - tile, stride)) + [w - tile] + E = torch.zeros(1, 3, h * sf, w * sf, dtype=img.dtype, device=device) + W = torch.zeros_like(E, dtype=devices.dtype, device=device) + + with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="ScuNET tiles") as pbar: + for h_idx in h_idx_list: + + for w_idx in w_idx_list: + + in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile] + + out_patch = model(in_patch) + out_patch_mask = torch.ones_like(out_patch) + + E[ + ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf + ].add_(out_patch) + W[ + ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf + ].add_(out_patch_mask) + pbar.update(1) + output = E.div_(W) + + return output + + def do_upscale(self, img: PIL.Image.Image, selected_file): + torch.cuda.empty_cache() model = self.load_model(selected_file) if model is None: + print(f"ScuNET: Unable to load model from {selected_file}", file=sys.stderr) return img device = devices.get_device_for('scunet') - img = np.array(img) - img = img[:, :, ::-1] - img = np.moveaxis(img, 2, 0) / 255 - img = torch.from_numpy(img).float() - img = img.unsqueeze(0).to(device) - - with torch.no_grad(): - output = model(img) - output = output.squeeze().float().cpu().clamp_(0, 1).numpy() - output = 255. * np.moveaxis(output, 0, 2) - output = output.astype(np.uint8) - output = output[:, :, ::-1] + tile = opts.SCUNET_tile + h, w = img.height, img.width + np_img = np.array(img) + np_img = np_img[:, :, ::-1] # RGB to BGR + np_img = np_img.transpose((2, 0, 1)) / 255 # HWC to CHW + torch_img = torch.from_numpy(np_img).float().unsqueeze(0).to(device) # type: ignore + + if tile > h or tile > w: + _img = torch.zeros(1, 3, max(h, tile), max(w, tile), dtype=torch_img.dtype, device=torch_img.device) + _img[:, :, :h, :w] = torch_img # pad image + torch_img = _img + + torch_output = self.tiled_inference(torch_img, model).squeeze(0) + torch_output = torch_output[:, :h * 1, :w * 1] # remove padding, if any + np_output: np.ndarray = torch_output.float().cpu().clamp_(0, 1).numpy() + del torch_img, torch_output torch.cuda.empty_cache() - return PIL.Image.fromarray(output, 'RGB') + + output = np_output.transpose((1, 2, 0)) # CHW to HWC + output = output[:, :, ::-1] # BGR to RGB + return PIL.Image.fromarray((output * 255).astype(np.uint8)) def load_model(self, path: str): device = devices.get_device_for('scunet') @@ -79,9 +132,8 @@ class UpscalerScuNET(modules.upscaler.Upscaler): model = net(in_nc=3, config=[4, 4, 4, 4, 4, 4, 4], dim=64) model.load_state_dict(torch.load(filename), strict=True) model.eval() - for k, v in model.named_parameters(): + for _, v in model.named_parameters(): v.requires_grad = False model = model.to(device) return model - diff --git a/extensions-builtin/ScuNET/scunet_model_arch.py b/extensions-builtin/ScuNET/scunet_model_arch.py index 43ca8d36..8028918a 100644 --- a/extensions-builtin/ScuNET/scunet_model_arch.py +++ b/extensions-builtin/ScuNET/scunet_model_arch.py @@ -61,7 +61,9 @@ class WMSA(nn.Module): Returns: output: tensor shape [b h w c] """ - if self.type != 'W': x = torch.roll(x, shifts=(-(self.window_size // 2), -(self.window_size // 2)), dims=(1, 2)) + if self.type != 'W': + x = torch.roll(x, shifts=(-(self.window_size // 2), -(self.window_size // 2)), dims=(1, 2)) + x = rearrange(x, 'b (w1 p1) (w2 p2) c -> b w1 w2 p1 p2 c', p1=self.window_size, p2=self.window_size) h_windows = x.size(1) w_windows = x.size(2) @@ -85,8 +87,9 @@ class WMSA(nn.Module): output = self.linear(output) output = rearrange(output, 'b (w1 w2) (p1 p2) c -> b (w1 p1) (w2 p2) c', w1=h_windows, p1=self.window_size) - if self.type != 'W': output = torch.roll(output, shifts=(self.window_size // 2, self.window_size // 2), - dims=(1, 2)) + if self.type != 'W': + output = torch.roll(output, shifts=(self.window_size // 2, self.window_size // 2), dims=(1, 2)) + return output def relative_embedding(self): diff --git a/extensions-builtin/SwinIR/scripts/swinir_model.py b/extensions-builtin/SwinIR/scripts/swinir_model.py index e8783bca..55dd94ab 100644 --- a/extensions-builtin/SwinIR/scripts/swinir_model.py +++ b/extensions-builtin/SwinIR/scripts/swinir_model.py @@ -1,4 +1,3 @@ -import contextlib import os import numpy as np @@ -8,7 +7,7 @@ from basicsr.utils.download_util import load_file_from_url from tqdm import tqdm from modules import modelloader, devices, script_callbacks, shared -from modules.shared import cmd_opts, opts, state +from modules.shared import opts, state from swinir_model_arch import SwinIR as net from swinir_model_arch_v2 import Swin2SR as net2 from modules.upscaler import Upscaler, UpscalerData @@ -45,7 +44,7 @@ class UpscalerSwinIR(Upscaler): img = upscale(img, model) try: torch.cuda.empty_cache() - except: + except Exception: pass return img diff --git a/extensions-builtin/SwinIR/swinir_model_arch.py b/extensions-builtin/SwinIR/swinir_model_arch.py index 863f42db..73e37cfa 100644 --- a/extensions-builtin/SwinIR/swinir_model_arch.py +++ b/extensions-builtin/SwinIR/swinir_model_arch.py @@ -644,7 +644,7 @@ class SwinIR(nn.Module): """ def __init__(self, img_size=64, patch_size=1, in_chans=3, - embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6], + embed_dim=96, depths=(6, 6, 6, 6), num_heads=(6, 6, 6, 6), window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, @@ -844,7 +844,7 @@ class SwinIR(nn.Module): H, W = self.patches_resolution flops += H * W * 3 * self.embed_dim * 9 flops += self.patch_embed.flops() - for i, layer in enumerate(self.layers): + for layer in self.layers: flops += layer.flops() flops += H * W * 3 * self.embed_dim * self.embed_dim flops += self.upsample.flops() diff --git a/extensions-builtin/SwinIR/swinir_model_arch_v2.py b/extensions-builtin/SwinIR/swinir_model_arch_v2.py index 0e28ae6e..3ca9be78 100644 --- a/extensions-builtin/SwinIR/swinir_model_arch_v2.py +++ b/extensions-builtin/SwinIR/swinir_model_arch_v2.py @@ -74,7 +74,7 @@ class WindowAttention(nn.Module): """
def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.,
- pretrained_window_size=[0, 0]):
+ pretrained_window_size=(0, 0)):
super().__init__()
self.dim = dim
@@ -698,7 +698,7 @@ class Swin2SR(nn.Module): """
def __init__(self, img_size=64, patch_size=1, in_chans=3,
- embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6],
+ embed_dim=96, depths=(6, 6, 6, 6), num_heads=(6, 6, 6, 6),
window_size=7, mlp_ratio=4., qkv_bias=True,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
@@ -994,7 +994,7 @@ class Swin2SR(nn.Module): H, W = self.patches_resolution
flops += H * W * 3 * self.embed_dim * 9
flops += self.patch_embed.flops()
- for i, layer in enumerate(self.layers):
+ for layer in self.layers:
flops += layer.flops()
flops += H * W * 3 * self.embed_dim * self.embed_dim
flops += self.upsample.flops()
diff --git a/extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js b/extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js index f0918e26..5c7a836a 100644 --- a/extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js +++ b/extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js @@ -1,103 +1,42 @@ // Stable Diffusion WebUI - Bracket checker -// Version 1.0 -// By Hingashi no Florin/Bwin4L +// By Hingashi no Florin/Bwin4L & @akx // Counts open and closed brackets (round, square, curly) in the prompt and negative prompt text boxes in the txt2img and img2img tabs. // If there's a mismatch, the keyword counter turns red and if you hover on it, a tooltip tells you what's wrong. -function checkBrackets(evt, textArea, counterElt) { - errorStringParen = '(...) - Different number of opening and closing parentheses detected.\n'; - errorStringSquare = '[...] - Different number of opening and closing square brackets detected.\n'; - errorStringCurly = '{...} - Different number of opening and closing curly brackets detected.\n'; - - openBracketRegExp = /\(/g; - closeBracketRegExp = /\)/g; - - openSquareBracketRegExp = /\[/g; - closeSquareBracketRegExp = /\]/g; - - openCurlyBracketRegExp = /\{/g; - closeCurlyBracketRegExp = /\}/g; - - totalOpenBracketMatches = 0; - totalCloseBracketMatches = 0; - totalOpenSquareBracketMatches = 0; - totalCloseSquareBracketMatches = 0; - totalOpenCurlyBracketMatches = 0; - totalCloseCurlyBracketMatches = 0; - - openBracketMatches = textArea.value.match(openBracketRegExp); - if(openBracketMatches) { - totalOpenBracketMatches = openBracketMatches.length; - } - - closeBracketMatches = textArea.value.match(closeBracketRegExp); - if(closeBracketMatches) { - totalCloseBracketMatches = closeBracketMatches.length; - } - - openSquareBracketMatches = textArea.value.match(openSquareBracketRegExp); - if(openSquareBracketMatches) { - totalOpenSquareBracketMatches = openSquareBracketMatches.length; - } - - closeSquareBracketMatches = textArea.value.match(closeSquareBracketRegExp); - if(closeSquareBracketMatches) { - totalCloseSquareBracketMatches = closeSquareBracketMatches.length; - } - - openCurlyBracketMatches = textArea.value.match(openCurlyBracketRegExp); - if(openCurlyBracketMatches) { - totalOpenCurlyBracketMatches = openCurlyBracketMatches.length; - } - - closeCurlyBracketMatches = textArea.value.match(closeCurlyBracketRegExp); - if(closeCurlyBracketMatches) { - totalCloseCurlyBracketMatches = closeCurlyBracketMatches.length; - } - - if(totalOpenBracketMatches != totalCloseBracketMatches) { - if(!counterElt.title.includes(errorStringParen)) { - counterElt.title += errorStringParen; - } - } else { - counterElt.title = counterElt.title.replace(errorStringParen, ''); - } - - if(totalOpenSquareBracketMatches != totalCloseSquareBracketMatches) { - if(!counterElt.title.includes(errorStringSquare)) { - counterElt.title += errorStringSquare; - } - } else { - counterElt.title = counterElt.title.replace(errorStringSquare, ''); - } - - if(totalOpenCurlyBracketMatches != totalCloseCurlyBracketMatches) { - if(!counterElt.title.includes(errorStringCurly)) { - counterElt.title += errorStringCurly; +function checkBrackets(textArea, counterElt) { + var counts = {}; + (textArea.value.match(/[(){}\[\]]/g) || []).forEach(bracket => { + counts[bracket] = (counts[bracket] || 0) + 1; + }); + var errors = []; + + function checkPair(open, close, kind) { + if (counts[open] !== counts[close]) { + errors.push( + `${open}...${close} - Detected ${counts[open] || 0} opening and ${counts[close] || 0} closing ${kind}.` + ); } - } else { - counterElt.title = counterElt.title.replace(errorStringCurly, ''); } - if(counterElt.title != '') { - counterElt.classList.add('error'); - } else { - counterElt.classList.remove('error'); - } + checkPair('(', ')', 'round brackets'); + checkPair('[', ']', 'square brackets'); + checkPair('{', '}', 'curly brackets'); + counterElt.title = errors.join('\n'); + counterElt.classList.toggle('error', errors.length !== 0); } -function setupBracketChecking(id_prompt, id_counter){ - var textarea = gradioApp().querySelector("#" + id_prompt + " > label > textarea"); - var counter = gradioApp().getElementById(id_counter) +function setupBracketChecking(id_prompt, id_counter) { + var textarea = gradioApp().querySelector("#" + id_prompt + " > label > textarea"); + var counter = gradioApp().getElementById(id_counter) - textarea.addEventListener("input", function(evt){ - checkBrackets(evt, textarea, counter) - }); + if (textarea && counter) { + textarea.addEventListener("input", () => checkBrackets(textarea, counter)); + } } -onUiLoaded(function(){ - setupBracketChecking('txt2img_prompt', 'txt2img_token_counter') - setupBracketChecking('txt2img_neg_prompt', 'txt2img_negative_token_counter') - setupBracketChecking('img2img_prompt', 'img2img_token_counter') - setupBracketChecking('img2img_neg_prompt', 'img2img_negative_token_counter') -})
\ No newline at end of file +onUiLoaded(function () { + setupBracketChecking('txt2img_prompt', 'txt2img_token_counter'); + setupBracketChecking('txt2img_neg_prompt', 'txt2img_negative_token_counter'); + setupBracketChecking('img2img_prompt', 'img2img_token_counter'); + setupBracketChecking('img2img_neg_prompt', 'img2img_negative_token_counter'); +}); |