aboutsummaryrefslogtreecommitdiffstats
path: root/ldm/models
diff options
context:
space:
mode:
Diffstat (limited to 'ldm/models')
-rw-r--r--ldm/models/autoencoder.py443
-rw-r--r--ldm/models/diffusion/__init__.py0
-rw-r--r--ldm/models/diffusion/classifier.py267
-rw-r--r--ldm/models/diffusion/ddim.py241
-rw-r--r--ldm/models/diffusion/ddpm.py1445
-rw-r--r--ldm/models/diffusion/dpm_solver/__init__.py1
-rw-r--r--ldm/models/diffusion/dpm_solver/dpm_solver.py1184
-rw-r--r--ldm/models/diffusion/dpm_solver/sampler.py82
-rw-r--r--ldm/models/diffusion/plms.py236
9 files changed, 0 insertions, 3899 deletions
diff --git a/ldm/models/autoencoder.py b/ldm/models/autoencoder.py
deleted file mode 100644
index 6a9c4f45..00000000
--- a/ldm/models/autoencoder.py
+++ /dev/null
@@ -1,443 +0,0 @@
-import torch
-import pytorch_lightning as pl
-import torch.nn.functional as F
-from contextlib import contextmanager
-
-from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
-
-from ldm.modules.diffusionmodules.model import Encoder, Decoder
-from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
-
-from ldm.util import instantiate_from_config
-
-
-class VQModel(pl.LightningModule):
- def __init__(self,
- ddconfig,
- lossconfig,
- n_embed,
- embed_dim,
- ckpt_path=None,
- ignore_keys=[],
- image_key="image",
- colorize_nlabels=None,
- monitor=None,
- batch_resize_range=None,
- scheduler_config=None,
- lr_g_factor=1.0,
- remap=None,
- sane_index_shape=False, # tell vector quantizer to return indices as bhw
- use_ema=False
- ):
- super().__init__()
- self.embed_dim = embed_dim
- self.n_embed = n_embed
- self.image_key = image_key
- self.encoder = Encoder(**ddconfig)
- self.decoder = Decoder(**ddconfig)
- self.loss = instantiate_from_config(lossconfig)
- self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
- remap=remap,
- sane_index_shape=sane_index_shape)
- self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
- self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
- if colorize_nlabels is not None:
- assert type(colorize_nlabels)==int
- self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
- if monitor is not None:
- self.monitor = monitor
- self.batch_resize_range = batch_resize_range
- if self.batch_resize_range is not None:
- print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
-
- self.use_ema = use_ema
- if self.use_ema:
- self.model_ema = LitEma(self)
- print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
-
- if ckpt_path is not None:
- self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
- self.scheduler_config = scheduler_config
- self.lr_g_factor = lr_g_factor
-
- @contextmanager
- def ema_scope(self, context=None):
- if self.use_ema:
- self.model_ema.store(self.parameters())
- self.model_ema.copy_to(self)
- if context is not None:
- print(f"{context}: Switched to EMA weights")
- try:
- yield None
- finally:
- if self.use_ema:
- self.model_ema.restore(self.parameters())
- if context is not None:
- print(f"{context}: Restored training weights")
-
- def init_from_ckpt(self, path, ignore_keys=list()):
- sd = torch.load(path, map_location="cpu")["state_dict"]
- keys = list(sd.keys())
- for k in keys:
- for ik in ignore_keys:
- if k.startswith(ik):
- print("Deleting key {} from state_dict.".format(k))
- del sd[k]
- missing, unexpected = self.load_state_dict(sd, strict=False)
- print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
- if len(missing) > 0:
- print(f"Missing Keys: {missing}")
- print(f"Unexpected Keys: {unexpected}")
-
- def on_train_batch_end(self, *args, **kwargs):
- if self.use_ema:
- self.model_ema(self)
-
- def encode(self, x):
- h = self.encoder(x)
- h = self.quant_conv(h)
- quant, emb_loss, info = self.quantize(h)
- return quant, emb_loss, info
-
- def encode_to_prequant(self, x):
- h = self.encoder(x)
- h = self.quant_conv(h)
- return h
-
- def decode(self, quant):
- quant = self.post_quant_conv(quant)
- dec = self.decoder(quant)
- return dec
-
- def decode_code(self, code_b):
- quant_b = self.quantize.embed_code(code_b)
- dec = self.decode(quant_b)
- return dec
-
- def forward(self, input, return_pred_indices=False):
- quant, diff, (_,_,ind) = self.encode(input)
- dec = self.decode(quant)
- if return_pred_indices:
- return dec, diff, ind
- return dec, diff
-
- def get_input(self, batch, k):
- x = batch[k]
- if len(x.shape) == 3:
- x = x[..., None]
- x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
- if self.batch_resize_range is not None:
- lower_size = self.batch_resize_range[0]
- upper_size = self.batch_resize_range[1]
- if self.global_step <= 4:
- # do the first few batches with max size to avoid later oom
- new_resize = upper_size
- else:
- new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
- if new_resize != x.shape[2]:
- x = F.interpolate(x, size=new_resize, mode="bicubic")
- x = x.detach()
- return x
-
- def training_step(self, batch, batch_idx, optimizer_idx):
- # https://github.com/pytorch/pytorch/issues/37142
- # try not to fool the heuristics
- x = self.get_input(batch, self.image_key)
- xrec, qloss, ind = self(x, return_pred_indices=True)
-
- if optimizer_idx == 0:
- # autoencode
- aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
- last_layer=self.get_last_layer(), split="train",
- predicted_indices=ind)
-
- self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
- return aeloss
-
- if optimizer_idx == 1:
- # discriminator
- discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
- last_layer=self.get_last_layer(), split="train")
- self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
- return discloss
-
- def validation_step(self, batch, batch_idx):
- log_dict = self._validation_step(batch, batch_idx)
- with self.ema_scope():
- log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
- return log_dict
-
- def _validation_step(self, batch, batch_idx, suffix=""):
- x = self.get_input(batch, self.image_key)
- xrec, qloss, ind = self(x, return_pred_indices=True)
- aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
- self.global_step,
- last_layer=self.get_last_layer(),
- split="val"+suffix,
- predicted_indices=ind
- )
-
- discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
- self.global_step,
- last_layer=self.get_last_layer(),
- split="val"+suffix,
- predicted_indices=ind
- )
- rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
- self.log(f"val{suffix}/rec_loss", rec_loss,
- prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
- self.log(f"val{suffix}/aeloss", aeloss,
- prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
- if version.parse(pl.__version__) >= version.parse('1.4.0'):
- del log_dict_ae[f"val{suffix}/rec_loss"]
- self.log_dict(log_dict_ae)
- self.log_dict(log_dict_disc)
- return self.log_dict
-
- def configure_optimizers(self):
- lr_d = self.learning_rate
- lr_g = self.lr_g_factor*self.learning_rate
- print("lr_d", lr_d)
- print("lr_g", lr_g)
- opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
- list(self.decoder.parameters())+
- list(self.quantize.parameters())+
- list(self.quant_conv.parameters())+
- list(self.post_quant_conv.parameters()),
- lr=lr_g, betas=(0.5, 0.9))
- opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
- lr=lr_d, betas=(0.5, 0.9))
-
- if self.scheduler_config is not None:
- scheduler = instantiate_from_config(self.scheduler_config)
-
- print("Setting up LambdaLR scheduler...")
- scheduler = [
- {
- 'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
- 'interval': 'step',
- 'frequency': 1
- },
- {
- 'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
- 'interval': 'step',
- 'frequency': 1
- },
- ]
- return [opt_ae, opt_disc], scheduler
- return [opt_ae, opt_disc], []
-
- def get_last_layer(self):
- return self.decoder.conv_out.weight
-
- def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
- log = dict()
- x = self.get_input(batch, self.image_key)
- x = x.to(self.device)
- if only_inputs:
- log["inputs"] = x
- return log
- xrec, _ = self(x)
- if x.shape[1] > 3:
- # colorize with random projection
- assert xrec.shape[1] > 3
- x = self.to_rgb(x)
- xrec = self.to_rgb(xrec)
- log["inputs"] = x
- log["reconstructions"] = xrec
- if plot_ema:
- with self.ema_scope():
- xrec_ema, _ = self(x)
- if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
- log["reconstructions_ema"] = xrec_ema
- return log
-
- def to_rgb(self, x):
- assert self.image_key == "segmentation"
- if not hasattr(self, "colorize"):
- self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
- x = F.conv2d(x, weight=self.colorize)
- x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
- return x
-
-
-class VQModelInterface(VQModel):
- def __init__(self, embed_dim, *args, **kwargs):
- super().__init__(embed_dim=embed_dim, *args, **kwargs)
- self.embed_dim = embed_dim
-
- def encode(self, x):
- h = self.encoder(x)
- h = self.quant_conv(h)
- return h
-
- def decode(self, h, force_not_quantize=False):
- # also go through quantization layer
- if not force_not_quantize:
- quant, emb_loss, info = self.quantize(h)
- else:
- quant = h
- quant = self.post_quant_conv(quant)
- dec = self.decoder(quant)
- return dec
-
-
-class AutoencoderKL(pl.LightningModule):
- def __init__(self,
- ddconfig,
- lossconfig,
- embed_dim,
- ckpt_path=None,
- ignore_keys=[],
- image_key="image",
- colorize_nlabels=None,
- monitor=None,
- ):
- super().__init__()
- self.image_key = image_key
- self.encoder = Encoder(**ddconfig)
- self.decoder = Decoder(**ddconfig)
- self.loss = instantiate_from_config(lossconfig)
- assert ddconfig["double_z"]
- self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
- self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
- self.embed_dim = embed_dim
- if colorize_nlabels is not None:
- assert type(colorize_nlabels)==int
- self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
- if monitor is not None:
- self.monitor = monitor
- if ckpt_path is not None:
- self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
-
- def init_from_ckpt(self, path, ignore_keys=list()):
- sd = torch.load(path, map_location="cpu")["state_dict"]
- keys = list(sd.keys())
- for k in keys:
- for ik in ignore_keys:
- if k.startswith(ik):
- print("Deleting key {} from state_dict.".format(k))
- del sd[k]
- self.load_state_dict(sd, strict=False)
- print(f"Restored from {path}")
-
- def encode(self, x):
- h = self.encoder(x)
- moments = self.quant_conv(h)
- posterior = DiagonalGaussianDistribution(moments)
- return posterior
-
- def decode(self, z):
- z = self.post_quant_conv(z)
- dec = self.decoder(z)
- return dec
-
- def forward(self, input, sample_posterior=True):
- posterior = self.encode(input)
- if sample_posterior:
- z = posterior.sample()
- else:
- z = posterior.mode()
- dec = self.decode(z)
- return dec, posterior
-
- def get_input(self, batch, k):
- x = batch[k]
- if len(x.shape) == 3:
- x = x[..., None]
- x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
- return x
-
- def training_step(self, batch, batch_idx, optimizer_idx):
- inputs = self.get_input(batch, self.image_key)
- reconstructions, posterior = self(inputs)
-
- if optimizer_idx == 0:
- # train encoder+decoder+logvar
- aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
- last_layer=self.get_last_layer(), split="train")
- self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
- self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
- return aeloss
-
- if optimizer_idx == 1:
- # train the discriminator
- discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
- last_layer=self.get_last_layer(), split="train")
-
- self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
- self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
- return discloss
-
- def validation_step(self, batch, batch_idx):
- inputs = self.get_input(batch, self.image_key)
- reconstructions, posterior = self(inputs)
- aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
- last_layer=self.get_last_layer(), split="val")
-
- discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
- last_layer=self.get_last_layer(), split="val")
-
- self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
- self.log_dict(log_dict_ae)
- self.log_dict(log_dict_disc)
- return self.log_dict
-
- def configure_optimizers(self):
- lr = self.learning_rate
- opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
- list(self.decoder.parameters())+
- list(self.quant_conv.parameters())+
- list(self.post_quant_conv.parameters()),
- lr=lr, betas=(0.5, 0.9))
- opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
- lr=lr, betas=(0.5, 0.9))
- return [opt_ae, opt_disc], []
-
- def get_last_layer(self):
- return self.decoder.conv_out.weight
-
- @torch.no_grad()
- def log_images(self, batch, only_inputs=False, **kwargs):
- log = dict()
- x = self.get_input(batch, self.image_key)
- x = x.to(self.device)
- if not only_inputs:
- xrec, posterior = self(x)
- if x.shape[1] > 3:
- # colorize with random projection
- assert xrec.shape[1] > 3
- x = self.to_rgb(x)
- xrec = self.to_rgb(xrec)
- log["samples"] = self.decode(torch.randn_like(posterior.sample()))
- log["reconstructions"] = xrec
- log["inputs"] = x
- return log
-
- def to_rgb(self, x):
- assert self.image_key == "segmentation"
- if not hasattr(self, "colorize"):
- self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
- x = F.conv2d(x, weight=self.colorize)
- x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
- return x
-
-
-class IdentityFirstStage(torch.nn.Module):
- def __init__(self, *args, vq_interface=False, **kwargs):
- self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
- super().__init__()
-
- def encode(self, x, *args, **kwargs):
- return x
-
- def decode(self, x, *args, **kwargs):
- return x
-
- def quantize(self, x, *args, **kwargs):
- if self.vq_interface:
- return x, None, [None, None, None]
- return x
-
- def forward(self, x, *args, **kwargs):
- return x
diff --git a/ldm/models/diffusion/__init__.py b/ldm/models/diffusion/__init__.py
deleted file mode 100644
index e69de29b..00000000
--- a/ldm/models/diffusion/__init__.py
+++ /dev/null
diff --git a/ldm/models/diffusion/classifier.py b/ldm/models/diffusion/classifier.py
deleted file mode 100644
index 67e98b9d..00000000
--- a/ldm/models/diffusion/classifier.py
+++ /dev/null
@@ -1,267 +0,0 @@
-import os
-import torch
-import pytorch_lightning as pl
-from omegaconf import OmegaConf
-from torch.nn import functional as F
-from torch.optim import AdamW
-from torch.optim.lr_scheduler import LambdaLR
-from copy import deepcopy
-from einops import rearrange
-from glob import glob
-from natsort import natsorted
-
-from ldm.modules.diffusionmodules.openaimodel import EncoderUNetModel, UNetModel
-from ldm.util import log_txt_as_img, default, ismap, instantiate_from_config
-
-__models__ = {
- 'class_label': EncoderUNetModel,
- 'segmentation': UNetModel
-}
-
-
-def disabled_train(self, mode=True):
- """Overwrite model.train with this function to make sure train/eval mode
- does not change anymore."""
- return self
-
-
-class NoisyLatentImageClassifier(pl.LightningModule):
-
- def __init__(self,
- diffusion_path,
- num_classes,
- ckpt_path=None,
- pool='attention',
- label_key=None,
- diffusion_ckpt_path=None,
- scheduler_config=None,
- weight_decay=1.e-2,
- log_steps=10,
- monitor='val/loss',
- *args,
- **kwargs):
- super().__init__(*args, **kwargs)
- self.num_classes = num_classes
- # get latest config of diffusion model
- diffusion_config = natsorted(glob(os.path.join(diffusion_path, 'configs', '*-project.yaml')))[-1]
- self.diffusion_config = OmegaConf.load(diffusion_config).model
- self.diffusion_config.params.ckpt_path = diffusion_ckpt_path
- self.load_diffusion()
-
- self.monitor = monitor
- self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1
- self.log_time_interval = self.diffusion_model.num_timesteps // log_steps
- self.log_steps = log_steps
-
- self.label_key = label_key if not hasattr(self.diffusion_model, 'cond_stage_key') \
- else self.diffusion_model.cond_stage_key
-
- assert self.label_key is not None, 'label_key neither in diffusion model nor in model.params'
-
- if self.label_key not in __models__:
- raise NotImplementedError()
-
- self.load_classifier(ckpt_path, pool)
-
- self.scheduler_config = scheduler_config
- self.use_scheduler = self.scheduler_config is not None
- self.weight_decay = weight_decay
-
- def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
- sd = torch.load(path, map_location="cpu")
- if "state_dict" in list(sd.keys()):
- sd = sd["state_dict"]
- keys = list(sd.keys())
- for k in keys:
- for ik in ignore_keys:
- if k.startswith(ik):
- print("Deleting key {} from state_dict.".format(k))
- del sd[k]
- missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
- sd, strict=False)
- print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
- if len(missing) > 0:
- print(f"Missing Keys: {missing}")
- if len(unexpected) > 0:
- print(f"Unexpected Keys: {unexpected}")
-
- def load_diffusion(self):
- model = instantiate_from_config(self.diffusion_config)
- self.diffusion_model = model.eval()
- self.diffusion_model.train = disabled_train
- for param in self.diffusion_model.parameters():
- param.requires_grad = False
-
- def load_classifier(self, ckpt_path, pool):
- model_config = deepcopy(self.diffusion_config.params.unet_config.params)
- model_config.in_channels = self.diffusion_config.params.unet_config.params.out_channels
- model_config.out_channels = self.num_classes
- if self.label_key == 'class_label':
- model_config.pool = pool
-
- self.model = __models__[self.label_key](**model_config)
- if ckpt_path is not None:
- print('#####################################################################')
- print(f'load from ckpt "{ckpt_path}"')
- print('#####################################################################')
- self.init_from_ckpt(ckpt_path)
-
- @torch.no_grad()
- def get_x_noisy(self, x, t, noise=None):
- noise = default(noise, lambda: torch.randn_like(x))
- continuous_sqrt_alpha_cumprod = None
- if self.diffusion_model.use_continuous_noise:
- continuous_sqrt_alpha_cumprod = self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1)
- # todo: make sure t+1 is correct here
-
- return self.diffusion_model.q_sample(x_start=x, t=t, noise=noise,
- continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod)
-
- def forward(self, x_noisy, t, *args, **kwargs):
- return self.model(x_noisy, t)
-
- @torch.no_grad()
- def get_input(self, batch, k):
- x = batch[k]
- if len(x.shape) == 3:
- x = x[..., None]
- x = rearrange(x, 'b h w c -> b c h w')
- x = x.to(memory_format=torch.contiguous_format).float()
- return x
-
- @torch.no_grad()
- def get_conditioning(self, batch, k=None):
- if k is None:
- k = self.label_key
- assert k is not None, 'Needs to provide label key'
-
- targets = batch[k].to(self.device)
-
- if self.label_key == 'segmentation':
- targets = rearrange(targets, 'b h w c -> b c h w')
- for down in range(self.numd):
- h, w = targets.shape[-2:]
- targets = F.interpolate(targets, size=(h // 2, w // 2), mode='nearest')
-
- # targets = rearrange(targets,'b c h w -> b h w c')
-
- return targets
-
- def compute_top_k(self, logits, labels, k, reduction="mean"):
- _, top_ks = torch.topk(logits, k, dim=1)
- if reduction == "mean":
- return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item()
- elif reduction == "none":
- return (top_ks == labels[:, None]).float().sum(dim=-1)
-
- def on_train_epoch_start(self):
- # save some memory
- self.diffusion_model.model.to('cpu')
-
- @torch.no_grad()
- def write_logs(self, loss, logits, targets):
- log_prefix = 'train' if self.training else 'val'
- log = {}
- log[f"{log_prefix}/loss"] = loss.mean()
- log[f"{log_prefix}/acc@1"] = self.compute_top_k(
- logits, targets, k=1, reduction="mean"
- )
- log[f"{log_prefix}/acc@5"] = self.compute_top_k(
- logits, targets, k=5, reduction="mean"
- )
-
- self.log_dict(log, prog_bar=False, logger=True, on_step=self.training, on_epoch=True)
- self.log('loss', log[f"{log_prefix}/loss"], prog_bar=True, logger=False)
- self.log('global_step', self.global_step, logger=False, on_epoch=False, prog_bar=True)
- lr = self.optimizers().param_groups[0]['lr']
- self.log('lr_abs', lr, on_step=True, logger=True, on_epoch=False, prog_bar=True)
-
- def shared_step(self, batch, t=None):
- x, *_ = self.diffusion_model.get_input(batch, k=self.diffusion_model.first_stage_key)
- targets = self.get_conditioning(batch)
- if targets.dim() == 4:
- targets = targets.argmax(dim=1)
- if t is None:
- t = torch.randint(0, self.diffusion_model.num_timesteps, (x.shape[0],), device=self.device).long()
- else:
- t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long()
- x_noisy = self.get_x_noisy(x, t)
- logits = self(x_noisy, t)
-
- loss = F.cross_entropy(logits, targets, reduction='none')
-
- self.write_logs(loss.detach(), logits.detach(), targets.detach())
-
- loss = loss.mean()
- return loss, logits, x_noisy, targets
-
- def training_step(self, batch, batch_idx):
- loss, *_ = self.shared_step(batch)
- return loss
-
- def reset_noise_accs(self):
- self.noisy_acc = {t: {'acc@1': [], 'acc@5': []} for t in
- range(0, self.diffusion_model.num_timesteps, self.diffusion_model.log_every_t)}
-
- def on_validation_start(self):
- self.reset_noise_accs()
-
- @torch.no_grad()
- def validation_step(self, batch, batch_idx):
- loss, *_ = self.shared_step(batch)
-
- for t in self.noisy_acc:
- _, logits, _, targets = self.shared_step(batch, t)
- self.noisy_acc[t]['acc@1'].append(self.compute_top_k(logits, targets, k=1, reduction='mean'))
- self.noisy_acc[t]['acc@5'].append(self.compute_top_k(logits, targets, k=5, reduction='mean'))
-
- return loss
-
- def configure_optimizers(self):
- optimizer = AdamW(self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay)
-
- if self.use_scheduler:
- scheduler = instantiate_from_config(self.scheduler_config)
-
- print("Setting up LambdaLR scheduler...")
- scheduler = [
- {
- 'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule),
- 'interval': 'step',
- 'frequency': 1
- }]
- return [optimizer], scheduler
-
- return optimizer
-
- @torch.no_grad()
- def log_images(self, batch, N=8, *args, **kwargs):
- log = dict()
- x = self.get_input(batch, self.diffusion_model.first_stage_key)
- log['inputs'] = x
-
- y = self.get_conditioning(batch)
-
- if self.label_key == 'class_label':
- y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
- log['labels'] = y
-
- if ismap(y):
- log['labels'] = self.diffusion_model.to_rgb(y)
-
- for step in range(self.log_steps):
- current_time = step * self.log_time_interval
-
- _, logits, x_noisy, _ = self.shared_step(batch, t=current_time)
-
- log[f'inputs@t{current_time}'] = x_noisy
-
- pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes)
- pred = rearrange(pred, 'b h w c -> b c h w')
-
- log[f'pred@t{current_time}'] = self.diffusion_model.to_rgb(pred)
-
- for key in log:
- log[key] = log[key][:N]
-
- return log
diff --git a/ldm/models/diffusion/ddim.py b/ldm/models/diffusion/ddim.py
deleted file mode 100644
index fb31215d..00000000
--- a/ldm/models/diffusion/ddim.py
+++ /dev/null
@@ -1,241 +0,0 @@
-"""SAMPLING ONLY."""
-
-import torch
-import numpy as np
-from tqdm import tqdm
-from functools import partial
-
-from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, \
- extract_into_tensor
-
-
-class DDIMSampler(object):
- def __init__(self, model, schedule="linear", **kwargs):
- super().__init__()
- self.model = model
- self.ddpm_num_timesteps = model.num_timesteps
- self.schedule = schedule
-
- def register_buffer(self, name, attr):
- if type(attr) == torch.Tensor:
- if attr.device != torch.device("cuda"):
- attr = attr.to(torch.device("cuda"))
- setattr(self, name, attr)
-
- def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
- self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
- num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
- alphas_cumprod = self.model.alphas_cumprod
- assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
- to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
-
- self.register_buffer('betas', to_torch(self.model.betas))
- self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
- self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
-
- # calculations for diffusion q(x_t | x_{t-1}) and others
- self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
- self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
- self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
- self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
- self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
-
- # ddim sampling parameters
- ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
- ddim_timesteps=self.ddim_timesteps,
- eta=ddim_eta,verbose=verbose)
- self.register_buffer('ddim_sigmas', ddim_sigmas)
- self.register_buffer('ddim_alphas', ddim_alphas)
- self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
- self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
- sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
- (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
- 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
- self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
-
- @torch.no_grad()
- def sample(self,
- S,
- batch_size,
- shape,
- conditioning=None,
- callback=None,
- normals_sequence=None,
- img_callback=None,
- quantize_x0=False,
- eta=0.,
- mask=None,
- x0=None,
- temperature=1.,
- noise_dropout=0.,
- score_corrector=None,
- corrector_kwargs=None,
- verbose=True,
- x_T=None,
- log_every_t=100,
- unconditional_guidance_scale=1.,
- unconditional_conditioning=None,
- # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
- **kwargs
- ):
- if conditioning is not None:
- if isinstance(conditioning, dict):
- cbs = conditioning[list(conditioning.keys())[0]].shape[0]
- if cbs != batch_size:
- print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
- else:
- if conditioning.shape[0] != batch_size:
- print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
-
- self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
- # sampling
- C, H, W = shape
- size = (batch_size, C, H, W)
- print(f'Data shape for DDIM sampling is {size}, eta {eta}')
-
- samples, intermediates = self.ddim_sampling(conditioning, size,
- callback=callback,
- img_callback=img_callback,
- quantize_denoised=quantize_x0,
- mask=mask, x0=x0,
- ddim_use_original_steps=False,
- noise_dropout=noise_dropout,
- temperature=temperature,
- score_corrector=score_corrector,
- corrector_kwargs=corrector_kwargs,
- x_T=x_T,
- log_every_t=log_every_t,
- unconditional_guidance_scale=unconditional_guidance_scale,
- unconditional_conditioning=unconditional_conditioning,
- )
- return samples, intermediates
-
- @torch.no_grad()
- def ddim_sampling(self, cond, shape,
- x_T=None, ddim_use_original_steps=False,
- callback=None, timesteps=None, quantize_denoised=False,
- mask=None, x0=None, img_callback=None, log_every_t=100,
- temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
- unconditional_guidance_scale=1., unconditional_conditioning=None,):
- device = self.model.betas.device
- b = shape[0]
- if x_T is None:
- img = torch.randn(shape, device=device)
- else:
- img = x_T
-
- if timesteps is None:
- timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
- elif timesteps is not None and not ddim_use_original_steps:
- subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
- timesteps = self.ddim_timesteps[:subset_end]
-
- intermediates = {'x_inter': [img], 'pred_x0': [img]}