aboutsummaryrefslogtreecommitdiffstats
path: root/modules/api/models.py
diff options
context:
space:
mode:
Diffstat (limited to 'modules/api/models.py')
-rw-r--r--modules/api/models.py24
1 files changed, 22 insertions, 2 deletions
diff --git a/modules/api/models.py b/modules/api/models.py
index 22b88c59..5fa63774 100644
--- a/modules/api/models.py
+++ b/modules/api/models.py
@@ -128,7 +128,7 @@ class ExtrasBaseRequest(BaseModel):
upscaling_resize: float = Field(default=2, title="Upscaling Factor", ge=1, le=8, description="By how much to upscale the image, only used when resize_mode=0.")
upscaling_resize_w: int = Field(default=512, title="Target Width", ge=1, description="Target width for the upscaler to hit. Only used when resize_mode=1.")
upscaling_resize_h: int = Field(default=512, title="Target Height", ge=1, description="Target height for the upscaler to hit. Only used when resize_mode=1.")
- upscaling_crop: bool = Field(default=True, title="Crop to fit", description="Should the upscaler crop the image to fit in the choosen size?")
+ upscaling_crop: bool = Field(default=True, title="Crop to fit", description="Should the upscaler crop the image to fit in the chosen size?")
upscaler_1: str = Field(default="None", title="Main upscaler", description=f"The name of the main upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}")
upscaler_2: str = Field(default="None", title="Secondary upscaler", description=f"The name of the secondary upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}")
extras_upscaler_2_visibility: float = Field(default=0, title="Secondary upscaler visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of secondary upscaler, values should be between 0 and 1.")
@@ -157,7 +157,8 @@ class PNGInfoRequest(BaseModel):
image: str = Field(title="Image", description="The base64 encoded PNG image")
class PNGInfoResponse(BaseModel):
- info: str = Field(title="Image info", description="A string with all the info the image had")
+ info: str = Field(title="Image info", description="A string with the parameters used to generate the image")
+ items: dict = Field(title="Items", description="An object containing all the info the image had")
class ProgressRequest(BaseModel):
skip_current_image: bool = Field(default=False, title="Skip current image", description="Skip current image serialization")
@@ -175,6 +176,15 @@ class InterrogateRequest(BaseModel):
class InterrogateResponse(BaseModel):
caption: str = Field(default=None, title="Caption", description="The generated caption for the image.")
+class TrainResponse(BaseModel):
+ info: str = Field(title="Train info", description="Response string from train embedding or hypernetwork task.")
+
+class CreateResponse(BaseModel):
+ info: str = Field(title="Create info", description="Response string from create embedding or hypernetwork task.")
+
+class PreprocessResponse(BaseModel):
+ info: str = Field(title="Preprocess info", description="Response string from preprocessing task.")
+
fields = {}
for key, metadata in opts.data_labels.items():
value = opts.data.get(key)
@@ -240,3 +250,13 @@ class ArtistItem(BaseModel):
score: float = Field(title="Score")
category: str = Field(title="Category")
+class EmbeddingItem(BaseModel):
+ step: Optional[int] = Field(title="Step", description="The number of steps that were used to train this embedding, if available")
+ sd_checkpoint: Optional[str] = Field(title="SD Checkpoint", description="The hash of the checkpoint this embedding was trained on, if available")
+ sd_checkpoint_name: Optional[str] = Field(title="SD Checkpoint Name", description="The name of the checkpoint this embedding was trained on, if available. Note that this is the name that was used by the trainer; for a stable identifier, use `sd_checkpoint` instead")
+ shape: int = Field(title="Shape", description="The length of each individual vector in the embedding")
+ vectors: int = Field(title="Vectors", description="The number of vectors in the embedding")
+
+class EmbeddingsResponse(BaseModel):
+ loaded: Dict[str, EmbeddingItem] = Field(title="Loaded", description="Embeddings loaded for the current model")
+ skipped: Dict[str, EmbeddingItem] = Field(title="Skipped", description="Embeddings skipped for the current model (likely due to architecture incompatibility)")