aboutsummaryrefslogtreecommitdiffstats
path: root/modules/api
diff options
context:
space:
mode:
Diffstat (limited to 'modules/api')
-rw-r--r--modules/api/api.py43
-rw-r--r--modules/api/models.py31
2 files changed, 54 insertions, 20 deletions
diff --git a/modules/api/api.py b/modules/api/api.py
index 8a17017b..abdbb6a7 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -150,6 +150,7 @@ class Api:
self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=TrainResponse)
self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=TrainResponse)
self.add_api_route("/sdapi/v1/memory", self.get_memory, methods=["GET"], response_model=MemoryResponse)
+ self.add_api_route("/sdapi/v1/scripts", self.get_scripts_list, methods=["GET"], response_model=ScriptsList)
def add_api_route(self, path: str, endpoint, **kwargs):
if shared.cmd_opts.api_auth:
@@ -170,6 +171,12 @@ class Api:
script_idx = script_name_to_index(script_name, script_runner.selectable_scripts)
script = script_runner.selectable_scripts[script_idx]
return script, script_idx
+
+ def get_scripts_list(self):
+ t2ilist = [str(title.lower()) for title in scripts.scripts_txt2img.titles]
+ i2ilist = [str(title.lower()) for title in scripts.scripts_img2img.titles]
+
+ return ScriptsList(txt2img = t2ilist, img2img = i2ilist)
def get_script(self, script_name, script_runner):
if script_name is None or script_name == "":
@@ -215,12 +222,11 @@ class Api:
ui.create_ui()
selectable_scripts, selectable_script_idx = self.get_selectable_script(txt2imgreq.script_name, script_runner)
- populate = txt2imgreq.copy(update={ # Override __init__ params
+ populate = txt2imgreq.copy(update={ # Override __init__ params
"sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index),
- "do_not_save_samples": True,
- "do_not_save_grid": True
- }
- )
+ "do_not_save_samples": not txt2imgreq.save_images,
+ "do_not_save_grid": not txt2imgreq.save_images,
+ })
if populate.sampler_name:
populate.sampler_index = None # prevent a warning later on
@@ -231,22 +237,25 @@ class Api:
script_args = self.init_script_args(txt2imgreq, selectable_scripts, selectable_script_idx, script_runner)
+ send_images = args.pop('send_images', True)
+ args.pop('save_images', None)
+
with self.queue_lock:
p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)
p.scripts = script_runner
+ p.outpath_grids = opts.outdir_txt2img_grids
+ p.outpath_samples = opts.outdir_txt2img_samples
shared.state.begin()
if selectable_scripts != None:
p.script_args = script_args
- p.outpath_grids = opts.outdir_txt2img_grids
- p.outpath_samples = opts.outdir_txt2img_samples
processed = scripts.scripts_txt2img.run(p, *p.script_args) # Need to pass args as list here
else:
p.script_args = tuple(script_args) # Need to pass args as tuple here
processed = process_images(p)
shared.state.end()
- b64images = list(map(encode_pil_to_base64, processed.images))
+ b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else []
return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
@@ -267,11 +276,10 @@ class Api:
populate = img2imgreq.copy(update={ # Override __init__ params
"sampler_name": validate_sampler_name(img2imgreq.sampler_name or img2imgreq.sampler_index),
- "do_not_save_samples": True,
- "do_not_save_grid": True,
- "mask": mask
- }
- )
+ "do_not_save_samples": not img2imgreq.save_images,
+ "do_not_save_grid": not img2imgreq.save_images,
+ "mask": mask,
+ })
if populate.sampler_name:
populate.sampler_index = None # prevent a warning later on
@@ -283,23 +291,26 @@ class Api:
script_args = self.init_script_args(img2imgreq, selectable_scripts, selectable_script_idx, script_runner)
+ send_images = args.pop('send_images', True)
+ args.pop('save_images', None)
+
with self.queue_lock:
p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)
p.init_images = [decode_base64_to_image(x) for x in init_images]
p.scripts = script_runner
+ p.outpath_grids = opts.outdir_img2img_grids
+ p.outpath_samples = opts.outdir_img2img_samples
shared.state.begin()
if selectable_scripts != None:
p.script_args = script_args
- p.outpath_grids = opts.outdir_img2img_grids
- p.outpath_samples = opts.outdir_img2img_samples
processed = scripts.scripts_img2img.run(p, *p.script_args) # Need to pass args as list here
else:
p.script_args = tuple(script_args) # Need to pass args as tuple here
processed = process_images(p)
shared.state.end()
- b64images = list(map(encode_pil_to_base64, processed.images))
+ b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else []
if not img2imgreq.include_init_images:
img2imgreq.init_images = None
diff --git a/modules/api/models.py b/modules/api/models.py
index e273469d..6c1c5546 100644
--- a/modules/api/models.py
+++ b/modules/api/models.py
@@ -14,8 +14,8 @@ API_NOT_ALLOWED = [
"outpath_samples",
"outpath_grids",
"sampler_index",
- "do_not_save_samples",
- "do_not_save_grid",
+ # "do_not_save_samples",
+ # "do_not_save_grid",
"extra_generation_params",
"overlay_images",
"do_not_reload_embeddings",
@@ -100,13 +100,32 @@ class PydanticModelGenerator:
StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator(
"StableDiffusionProcessingTxt2Img",
StableDiffusionProcessingTxt2Img,
- [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}, {"key": "alwayson_scripts", "type": dict, "default": {}}]
+ [
+ {"key": "sampler_index", "type": str, "default": "Euler"},
+ {"key": "script_name", "type": str, "default": None},
+ {"key": "script_args", "type": list, "default": []},
+ {"key": "send_images", "type": bool, "default": True},
+ {"key": "save_images", "type": bool, "default": False},
+ {"key": "alwayson_scripts", "type": dict, "default": {}},
+ ]
).generate_model()
StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
"StableDiffusionProcessingImg2Img",
StableDiffusionProcessingImg2Img,
- [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}, {"key": "alwayson_scripts", "type": dict, "default": {}}]
+
+ [
+ {"key": "sampler_index", "type": str, "default": "Euler"},
+ {"key": "init_images", "type": list, "default": None},
+ {"key": "denoising_strength", "type": float, "default": 0.75},
+ {"key": "mask", "type": str, "default": None},
+ {"key": "include_init_images", "type": bool, "default": False, "exclude" : True},
+ {"key": "script_name", "type": str, "default": None},
+ {"key": "script_args", "type": list, "default": []},
+ {"key": "send_images", "type": bool, "default": True},
+ {"key": "save_images", "type": bool, "default": False},
+ {"key": "alwayson_scripts", "type": dict, "default": {}},
+ ]
).generate_model()
class TextToImageResponse(BaseModel):
@@ -267,3 +286,7 @@ class EmbeddingsResponse(BaseModel):
class MemoryResponse(BaseModel):
ram: dict = Field(title="RAM", description="System memory stats")
cuda: dict = Field(title="CUDA", description="nVidia CUDA memory stats")
+
+class ScriptsList(BaseModel):
+ txt2img: list = Field(default=None,title="Txt2img", description="Titles of scripts (txt2img)")
+ img2img: list = Field(default=None,title="Img2img", description="Titles of scripts (img2img)") \ No newline at end of file