aboutsummaryrefslogtreecommitdiffstats
path: root/modules/deepbooru.py
diff options
context:
space:
mode:
Diffstat (limited to 'modules/deepbooru.py')
-rw-r--r--modules/deepbooru.py73
1 files changed, 57 insertions, 16 deletions
diff --git a/modules/deepbooru.py b/modules/deepbooru.py
index 29529949..f34f3788 100644
--- a/modules/deepbooru.py
+++ b/modules/deepbooru.py
@@ -2,33 +2,46 @@ import os.path
from concurrent.futures import ProcessPoolExecutor
import multiprocessing
import time
+import re
+
+re_special = re.compile(r'([\\()])')
def get_deepbooru_tags(pil_image):
"""
This method is for running only one image at a time for simple use. Used to the img2img interrogate.
"""
from modules import shared # prevents circular reference
- create_deepbooru_process(shared.opts.interrogate_deepbooru_score_threshold, shared.opts.deepbooru_sort_alpha)
- shared.deepbooru_process_return["value"] = -1
- shared.deepbooru_process_queue.put(pil_image)
- while shared.deepbooru_process_return["value"] == -1:
- time.sleep(0.2)
- tags = shared.deepbooru_process_return["value"]
- release_process()
- return tags
+
+ try:
+ create_deepbooru_process(shared.opts.interrogate_deepbooru_score_threshold, create_deepbooru_opts())
+ return get_tags_from_process(pil_image)
+ finally:
+ release_process()
-def deepbooru_process(queue, deepbooru_process_return, threshold, alpha_sort):
+OPT_INCLUDE_RANKS = "include_ranks"
+def create_deepbooru_opts():
+ from modules import shared
+
+ return {
+ "use_spaces": shared.opts.deepbooru_use_spaces,
+ "use_escape": shared.opts.deepbooru_escape,
+ "alpha_sort": shared.opts.deepbooru_sort_alpha,
+ OPT_INCLUDE_RANKS: shared.opts.interrogate_return_ranks,
+ }
+
+
+def deepbooru_process(queue, deepbooru_process_return, threshold, deepbooru_opts):
model, tags = get_deepbooru_tags_model()
while True: # while process is running, keep monitoring queue for new image
pil_image = queue.get()
if pil_image == "QUIT":
break
else:
- deepbooru_process_return["value"] = get_deepbooru_tags_from_model(model, tags, pil_image, threshold, alpha_sort)
+ deepbooru_process_return["value"] = get_deepbooru_tags_from_model(model, tags, pil_image, threshold, deepbooru_opts)
-def create_deepbooru_process(threshold, alpha_sort):
+def create_deepbooru_process(threshold, deepbooru_opts):
"""
Creates deepbooru process. A queue is created to send images into the process. This enables multiple images
to be processed in a row without reloading the model or creating a new process. To return the data, a shared
@@ -41,10 +54,23 @@ def create_deepbooru_process(threshold, alpha_sort):
shared.deepbooru_process_queue = shared.deepbooru_process_manager.Queue()
shared.deepbooru_process_return = shared.deepbooru_process_manager.dict()
shared.deepbooru_process_return["value"] = -1
- shared.deepbooru_process = multiprocessing.Process(target=deepbooru_process, args=(shared.deepbooru_process_queue, shared.deepbooru_process_return, threshold, alpha_sort))
+ shared.deepbooru_process = multiprocessing.Process(target=deepbooru_process, args=(shared.deepbooru_process_queue, shared.deepbooru_process_return, threshold, deepbooru_opts))
shared.deepbooru_process.start()
+def get_tags_from_process(image):
+ from modules import shared
+
+ shared.deepbooru_process_return["value"] = -1
+ shared.deepbooru_process_queue.put(image)
+ while shared.deepbooru_process_return["value"] == -1:
+ time.sleep(0.2)
+ caption = shared.deepbooru_process_return["value"]
+ shared.deepbooru_process_return["value"] = -1
+
+ return caption
+
+
def release_process():
"""
Stops the deepbooru process to return used memory
@@ -81,10 +107,16 @@ def get_deepbooru_tags_model():
return model, tags
-def get_deepbooru_tags_from_model(model, tags, pil_image, threshold, alpha_sort):
+def get_deepbooru_tags_from_model(model, tags, pil_image, threshold, deepbooru_opts):
import deepdanbooru as dd
import tensorflow as tf
import numpy as np
+
+ alpha_sort = deepbooru_opts['alpha_sort']
+ use_spaces = deepbooru_opts['use_spaces']
+ use_escape = deepbooru_opts['use_escape']
+ include_ranks = deepbooru_opts['include_ranks']
+
width = model.input_shape[2]
height = model.input_shape[1]
image = np.array(pil_image)
@@ -122,11 +154,20 @@ def get_deepbooru_tags_from_model(model, tags, pil_image, threshold, alpha_sort)
if alpha_sort:
sort_ndx = 1
- # sort by reverse by likelihood and normal for alpha
+ # sort by reverse by likelihood and normal for alpha, and format tag text as requested
unsorted_tags_in_theshold.sort(key=lambda y: y[sort_ndx], reverse=(not alpha_sort))
for weight, tag in unsorted_tags_in_theshold:
- result_tags_out.append(tag)
+ # note: tag_outformat will still have a colon if include_ranks is True
+ tag_outformat = tag.replace(':', ' ')
+ if use_spaces:
+ tag_outformat = tag_outformat.replace('_', ' ')
+ if use_escape:
+ tag_outformat = re.sub(re_special, r'\\\1', tag_outformat)
+ if include_ranks:
+ tag_outformat = f"({tag_outformat}:{weight:.3f})"
+
+ result_tags_out.append(tag_outformat)
print('\n'.join(sorted(result_tags_print, reverse=True)))
- return ', '.join(result_tags_out).replace('_', ' ').replace(':', ' ')
+ return ', '.join(result_tags_out)