aboutsummaryrefslogtreecommitdiffstats
path: root/modules/hypernetworks/hypernetwork.py
diff options
context:
space:
mode:
Diffstat (limited to 'modules/hypernetworks/hypernetwork.py')
-rw-r--r--modules/hypernetworks/hypernetwork.py243
1 files changed, 182 insertions, 61 deletions
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 47d91ea5..a11e01d6 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -1,28 +1,41 @@
+import csv
import datetime
import glob
import html
import os
import sys
import traceback
-import tqdm
-import csv
-
-import torch
+import inspect
-from ldm.util import default
-from modules import devices, shared, processing, sd_models
+import modules.textual_inversion.dataset
import torch
-from torch import einsum
+import tqdm
from einops import rearrange, repeat
-import modules.textual_inversion.dataset
+from ldm.util import default
+from modules import devices, processing, sd_models, shared
from modules.textual_inversion import textual_inversion
from modules.textual_inversion.learn_schedule import LearnRateScheduler
+from torch import einsum
+from torch.nn.init import normal_, xavier_normal_, xavier_uniform_, kaiming_normal_, kaiming_uniform_, zeros_
+
+from collections import defaultdict, deque
+from statistics import stdev, mean
class HypernetworkModule(torch.nn.Module):
multiplier = 1.0
-
- def __init__(self, dim, state_dict=None, layer_structure=None, add_layer_norm=False, activation_func=None):
+ activation_dict = {
+ "linear": torch.nn.Identity,
+ "relu": torch.nn.ReLU,
+ "leakyrelu": torch.nn.LeakyReLU,
+ "elu": torch.nn.ELU,
+ "swish": torch.nn.Hardswish,
+ "tanh": torch.nn.Tanh,
+ "sigmoid": torch.nn.Sigmoid,
+ }
+ activation_dict.update({cls_name.lower(): cls_obj for cls_name, cls_obj in inspect.getmembers(torch.nn.modules.activation) if inspect.isclass(cls_obj) and cls_obj.__module__ == 'torch.nn.modules.activation'})
+
+ def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal', add_layer_norm=False, use_dropout=False):
super().__init__()
assert layer_structure is not None, "layer_structure must not be None"
@@ -31,20 +44,26 @@ class HypernetworkModule(torch.nn.Module):
linears = []
for i in range(len(layer_structure) - 1):
+
+ # Add a fully-connected layer
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
- if activation_func == "relu":
- linears.append(torch.nn.ReLU())
- elif activation_func == "leakyrelu":
- linears.append(torch.nn.LeakyReLU())
- elif activation_func == 'linear' or activation_func is None:
+ # Add an activation func
+ if activation_func == "linear" or activation_func is None:
pass
+ elif activation_func in self.activation_dict:
+ linears.append(self.activation_dict[activation_func]())
else:
raise RuntimeError(f'hypernetwork uses an unsupported activation function: {activation_func}')
+ # Add layer normalization
if add_layer_norm:
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
+ # Add dropout expect last layer
+ if use_dropout and i < len(layer_structure) - 3:
+ linears.append(torch.nn.Dropout(p=0.3))
+
self.linear = torch.nn.Sequential(*linears)
if state_dict is not None:
@@ -53,9 +72,24 @@ class HypernetworkModule(torch.nn.Module):
else:
for layer in self.linear:
if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
- layer.weight.data.normal_(mean=0.0, std=0.01)
- layer.bias.data.zero_()
-
+ w, b = layer.weight.data, layer.bias.data
+ if weight_init == "Normal" or type(layer) == torch.nn.LayerNorm:
+ normal_(w, mean=0.0, std=0.01)
+ normal_(b, mean=0.0, std=0.005)
+ elif weight_init == 'XavierUniform':
+ xavier_uniform_(w)
+ zeros_(b)
+ elif weight_init == 'XavierNormal':
+ xavier_normal_(w)
+ zeros_(b)
+ elif weight_init == 'KaimingUniform':
+ kaiming_uniform_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu')
+ zeros_(b)
+ elif weight_init == 'KaimingNormal':
+ kaiming_normal_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu')
+ zeros_(b)
+ else:
+ raise KeyError(f"Key {weight_init} is not defined as initialization!")
self.to(devices.device)
def fix_old_state_dict(self, state_dict):
@@ -93,7 +127,7 @@ class Hypernetwork:
filename = None
name = None
- def __init__(self, name=None, enable_sizes=None, layer_structure=None, add_layer_norm=False, activation_func=None):
+ def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False):
self.filename = None
self.name = name
self.layers = {}
@@ -101,13 +135,15 @@ class Hypernetwork:
self.sd_checkpoint = None
self.sd_checkpoint_name = None
self.layer_structure = layer_structure
- self.add_layer_norm = add_layer_norm
self.activation_func = activation_func
+ self.weight_init = weight_init
+ self.add_layer_norm = add_layer_norm
+ self.use_dropout = use_dropout
for size in enable_sizes or []:
self.layers[size] = (
- HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm, self.activation_func),
- HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm, self.activation_func),
+ HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init, self.add_layer_norm, self.use_dropout),
+ HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init, self.add_layer_norm, self.use_dropout),
)
def weights(self):
@@ -129,8 +165,10 @@ class Hypernetwork:
state_dict['step'] = self.step
state_dict['name'] = self.name
state_dict['layer_structure'] = self.layer_structure
- state_dict['is_layer_norm'] = self.add_layer_norm
state_dict['activation_func'] = self.activation_func
+ state_dict['is_layer_norm'] = self.add_layer_norm
+ state_dict['weight_initialization'] = self.weight_init
+ state_dict['use_dropout'] = self.use_dropout
state_dict['sd_checkpoint'] = self.sd_checkpoint
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
@@ -144,14 +182,21 @@ class Hypernetwork:
state_dict = torch.load(filename, map_location='cpu')
self.layer_structure = state_dict.get('layer_structure', [1, 2, 1])
- self.add_layer_norm = state_dict.get('is_layer_norm', False)
+ print(self.layer_structure)
self.activation_func = state_dict.get('activation_func', None)
+ print(f"Activation function is {self.activation_func}")
+ self.weight_init = state_dict.get('weight_initialization', 'Normal')
+ print(f"Weight initialization is {self.weight_init}")
+ self.add_layer_norm = state_dict.get('is_layer_norm', False)
+ print(f"Layer norm is set to {self.add_layer_norm}")
+ self.use_dropout = state_dict.get('use_dropout', False)
+ print(f"Dropout usage is set to {self.use_dropout}" )
for size, sd in state_dict.items():
if type(size) == int:
self.layers[size] = (
- HypernetworkModule(size, sd[0], self.layer_structure, self.add_layer_norm, self.activation_func),
- HypernetworkModule(size, sd[1], self.layer_structure, self.add_layer_norm, self.activation_func),
+ HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.weight_init, self.add_layer_norm, self.use_dropout),
+ HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.weight_init, self.add_layer_norm, self.use_dropout),
)
self.name = state_dict.get('name', self.name)
@@ -164,13 +209,16 @@ def list_hypernetworks(path):
res = {}
for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True):
name = os.path.splitext(os.path.basename(filename))[0]
- res[name] = filename
+ # Prevent a hypothetical "None.pt" from being listed.
+ if name != "None":
+ res[name] = filename
return res
def load_hypernetwork(filename):
path = shared.hypernetworks.get(filename, None)
- if path is not None:
+ # Prevent any file named "None.pt" from being loaded.
+ if path is not None and filename != "None":
print(f"Loading hypernetwork {filename}")
try:
shared.loaded_hypernetwork = Hypernetwork()
@@ -255,11 +303,41 @@ def stack_conds(conds):
return torch.stack(conds)
+def statistics(data):
+ if len(data) < 2:
+ std = 0
+ else:
+ std = stdev(data)
+ total_information = f"loss:{mean(data):.3f}" + u"\u00B1" + f"({std/ (len(data) ** 0.5):.3f})"
+ recent_data = data[-32:]
+ if len(recent_data) < 2:
+ std = 0
+ else:
+ std = stdev(recent_data)
+ recent_information = f"recent 32 loss:{mean(recent_data):.3f}" + u"\u00B1" + f"({std / (len(recent_data) ** 0.5):.3f})"
+ return total_information, recent_information
+
+
+def report_statistics(loss_info:dict):
+ keys = sorted(loss_info.keys(), key=lambda x: sum(loss_info[x]) / len(loss_info[x]))
+ for key in keys:
+ try:
+ print("Loss statistics for file " + key)
+ info, recent = statistics(list(loss_info[key]))
+ print(info)
+ print(recent)
+ except Exception as e:
+ print(e)
+
+
+
def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
# images allows training previews to have infotext. Importing it at the top causes a circular import problem.
from modules import images
- assert hypernetwork_name, 'hypernetwork not selected'
+ save_hypernetwork_every = save_hypernetwork_every or 0
+ create_image_every = create_image_every or 0
+ textual_inversion.validate_train_inputs(hypernetwork_name, learn_rate, batch_size, data_root, template_file, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork")
path = shared.hypernetworks.get(hypernetwork_name, None)
shared.loaded_hypernetwork = Hypernetwork()
@@ -285,35 +363,51 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
else:
images_dir = None
+ hypernetwork = shared.loaded_hypernetwork
+ checkpoint = sd_models.select_checkpoint()
+
+ ititial_step = hypernetwork.step or 0
+ if ititial_step >= steps:
+ shared.state.textinfo = f"Model has already been trained beyond specified max steps"
+ return hypernetwork, filename
+
+ scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
+
+ # dataset loading may take a while, so input validations and early returns should be done before this
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size)
+
if unload:
shared.sd_model.cond_stage_model.to(devices.cpu)
shared.sd_model.first_stage_model.to(devices.cpu)
- hypernetwork = shared.loaded_hypernetwork
+ size = len(ds.indexes)
+ loss_dict = defaultdict(lambda : deque(maxlen = 1024))
+ losses = torch.zeros((size,))
+ previous_mean_losses = [0]
+ previous_mean_loss = 0
+ print("Mean loss of {} elements".format(size))
+
weights = hypernetwork.weights()
for weight in weights:
weight.requires_grad = True
+ # if optimizer == "AdamW": or else Adam / AdamW / SGD, etc...
+ optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate)
- losses = torch.zeros((32,))
+ steps_without_grad = 0
last_saved_file = "<none>"
last_saved_image = "<none>"
forced_filename = "<none>"
- ititial_step = hypernetwork.step or 0
- if ititial_step > steps:
- return hypernetwork, filename
-
- scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
- optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate)
-
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
for i, entries in pbar:
hypernetwork.step = i + ititial_step
-
+ if len(loss_dict) > 0:
+ previous_mean_losses = [i[-1] for i in loss_dict.values()]
+ previous_mean_loss = mean(previous_mean_losses)
+
scheduler.apply(optimizer, hypernetwork.step)
if scheduler.finished:
break
@@ -330,28 +424,46 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
del c
losses[hypernetwork.step % losses.shape[0]] = loss.item()
-
+ for entry in entries:
+ loss_dict[entry.filename].append(loss.item())
+
optimizer.zero_grad()
+ weights[0].grad = None
loss.backward()
+
+ if weights[0].grad is None:
+ steps_without_grad += 1
+ else:
+ steps_without_grad = 0
+ assert steps_without_grad < 10, 'no gradient found for the trained weight after backward() for 10 steps in a row; this is a bug; training cannot continue'
+
optimizer.step()
- mean_loss = losses.mean()
- if torch.isnan(mean_loss):
+
+ steps_done = hypernetwork.step + 1
+
+ if torch.isnan(losses[hypernetwork.step % losses.shape[0]]):
raise RuntimeError("Loss diverged.")
- pbar.set_description(f"loss: {mean_loss:.7f}")
+
+ if len(previous_mean_losses) > 1:
+ std = stdev(previous_mean_losses)
+ else:
+ std = 0
+ dataset_loss_info = f"dataset loss:{mean(previous_mean_losses):.3f}" + u"\u00B1" + f"({std / (len(previous_mean_losses) ** 0.5):.3f})"
+ pbar.set_description(dataset_loss_info)
- if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0:
+ if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0:
# Before saving, change name to match current checkpoint.
- hypernetwork.name = f'{hypernetwork_name}-{hypernetwork.step}'
- last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork.name}.pt')
- hypernetwork.save(last_saved_file)
+ hypernetwork_name_every = f'{hypernetwork_name}-{steps_done}'
+ last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name_every}.pt')
+ save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, last_saved_file)
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
- "loss": f"{mean_loss:.7f}",
+ "loss": f"{previous_mean_loss:.7f}",
"learn_rate": scheduler.learn_rate
})
- if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
- forced_filename = f'{hypernetwork_name}-{hypernetwork.step}'
+ if images_dir is not None and steps_done % create_image_every == 0:
+ forced_filename = f'{hypernetwork_name}-{steps_done}'
last_saved_image = os.path.join(images_dir, forced_filename)
optimizer.zero_grad()
@@ -388,30 +500,39 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
if image is not None:
shared.state.current_image = image
- last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename)
+ last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
last_saved_image += f", prompt: {preview_text}"
shared.state.job_no = hypernetwork.step
shared.state.textinfo = f"""
<p>
-Loss: {mean_loss:.7f}<br/>
+Loss: {previous_mean_loss:.7f}<br/>
Step: {hypernetwork.step}<br/>
Last prompt: {html.escape(entries[0].cond_text)}<br/>
Last saved hypernetwork: {html.escape(last_saved_file)}<br/>
Last saved image: {html.escape(last_saved_image)}<br/>
</p>
"""
+
+ report_statistics(loss_dict)
- checkpoint = sd_models.select_checkpoint()
-
- hypernetwork.sd_checkpoint = checkpoint.hash
- hypernetwork.sd_checkpoint_name = checkpoint.model_name
- # Before saving for the last time, change name back to the base name (as opposed to the save_hypernetwork_every step-suffixed naming convention).
- hypernetwork.name = hypernetwork_name
- filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork.name}.pt')
- hypernetwork.save(filename)
+ filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
+ save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename)
return hypernetwork, filename
-
+def save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename):
+ old_hypernetwork_name = hypernetwork.name
+ old_sd_checkpoint = hypernetwork.sd_checkpoint if hasattr(hypernetwork, "sd_checkpoint") else None
+ old_sd_checkpoint_name = hypernetwork.sd_checkpoint_name if hasattr(hypernetwork, "sd_checkpoint_name") else None
+ try:
+ hypernetwork.sd_checkpoint = checkpoint.hash
+ hypernetwork.sd_checkpoint_name = checkpoint.model_name
+ hypernetwork.name = hypernetwork_name
+ hypernetwork.save(filename)
+ except:
+ hypernetwork.sd_checkpoint = old_sd_checkpoint
+ hypernetwork.sd_checkpoint_name = old_sd_checkpoint_name
+ hypernetwork.name = old_hypernetwork_name
+ raise