diff options
Diffstat (limited to 'modules/interrogate.py')
-rw-r--r-- | modules/interrogate.py | 142 |
1 files changed, 142 insertions, 0 deletions
diff --git a/modules/interrogate.py b/modules/interrogate.py new file mode 100644 index 00000000..ed97a58b --- /dev/null +++ b/modules/interrogate.py @@ -0,0 +1,142 @@ +import os
+import sys
+import traceback
+from collections import namedtuple
+import re
+
+import torch
+
+from PIL import Image
+from torchvision import transforms
+from torchvision.transforms.functional import InterpolationMode
+
+import modules.shared as shared
+from modules import devices, paths
+
+blip_image_eval_size = 384
+blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth'
+clip_model_name = 'ViT-L/14'
+
+Category = namedtuple("Category", ["name", "topn", "items"])
+
+re_topn = re.compile(r"\.top(\d+)\.")
+
+class InterrogateModels:
+ blip_model = None
+ clip_model = None
+ clip_preprocess = None
+ categories = None
+
+ def __init__(self, content_dir):
+ self.categories = []
+
+ if os.path.exists(content_dir):
+ for filename in os.listdir(content_dir):
+ m = re_topn.search(filename)
+ topn = 1 if m is None else int(m.group(1))
+
+ with open(os.path.join(content_dir, filename), "r", encoding="utf8") as file:
+ lines = [x.strip() for x in file.readlines()]
+
+ self.categories.append(Category(name=filename, topn=topn, items=lines))
+
+ def load_blip_model(self):
+ import models.blip
+
+ blip_model = models.blip.blip_decoder(pretrained=blip_model_url, image_size=blip_image_eval_size, vit='base', med_config=os.path.join(paths.paths["BLIP"], "configs", "med_config.json"))
+ blip_model.eval()
+
+ return blip_model
+
+ def load_clip_model(self):
+ import clip
+
+ model, preprocess = clip.load(clip_model_name)
+ model.eval()
+ model = model.to(shared.device)
+
+ return model, preprocess
+
+ def load(self):
+ if self.blip_model is None:
+ self.blip_model = self.load_blip_model()
+
+ self.blip_model = self.blip_model.to(shared.device)
+
+ if self.clip_model is None:
+ self.clip_model, self.clip_preprocess = self.load_clip_model()
+
+ self.clip_model = self.clip_model.to(shared.device)
+
+ def unload(self):
+ if not shared.opts.interrogate_keep_models_in_memory:
+ if self.clip_model is not None:
+ self.clip_model = self.clip_model.to(devices.cpu)
+
+ if self.blip_model is not None:
+ self.blip_model = self.blip_model.to(devices.cpu)
+
+
+ def rank(self, image_features, text_array, top_count=1):
+ import clip
+
+ top_count = min(top_count, len(text_array))
+ text_tokens = clip.tokenize([text for text in text_array]).cuda()
+ with torch.no_grad():
+ text_features = self.clip_model.encode_text(text_tokens).float()
+ text_features /= text_features.norm(dim=-1, keepdim=True)
+
+ similarity = torch.zeros((1, len(text_array))).to(shared.device)
+ for i in range(image_features.shape[0]):
+ similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1)
+ similarity /= image_features.shape[0]
+
+ top_probs, top_labels = similarity.cpu().topk(top_count, dim=-1)
+ return [(text_array[top_labels[0][i].numpy()], (top_probs[0][i].numpy()*100)) for i in range(top_count)]
+
+
+ def generate_caption(self, pil_image):
+ gpu_image = transforms.Compose([
+ transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC),
+ transforms.ToTensor(),
+ transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
+ ])(pil_image).unsqueeze(0).to(shared.device)
+
+ with torch.no_grad():
+ caption = self.blip_model.generate(gpu_image, sample=False, num_beams=shared.opts.interrogate_clip_num_beams, min_length=shared.opts.interrogate_clip_min_length, max_length=shared.opts.interrogate_clip_max_length)
+
+ return caption[0]
+
+ def interrogate(self, pil_image):
+ res = None
+
+ try:
+ self.load()
+
+ caption = self.generate_caption(pil_image)
+ res = caption
+
+ images = self.clip_preprocess(pil_image).unsqueeze(0).to(shared.device)
+
+ with torch.no_grad():
+ image_features = self.clip_model.encode_image(images).float()
+
+ image_features /= image_features.norm(dim=-1, keepdim=True)
+
+ if shared.opts.interrogate_use_builtin_artists:
+ artist = self.rank(image_features, ["by " + artist.name for artist in shared.artist_db.artists])[0]
+
+ res += ", " + artist[0]
+
+ for name, topn, items in self.categories:
+ matches = self.rank(image_features, items, top_count=topn)
+ for match, score in matches:
+ res += ", " + match
+
+ except Exception:
+ print(f"Error interrogating", file=sys.stderr)
+ print(traceback.format_exc(), file=sys.stderr)
+
+ self.unload()
+
+ return res
|