aboutsummaryrefslogtreecommitdiffstats
path: root/modules/mac_specific.py
diff options
context:
space:
mode:
Diffstat (limited to 'modules/mac_specific.py')
-rw-r--r--modules/mac_specific.py15
1 files changed, 13 insertions, 2 deletions
diff --git a/modules/mac_specific.py b/modules/mac_specific.py
index 18e6ff72..d74c6b95 100644
--- a/modules/mac_specific.py
+++ b/modules/mac_specific.py
@@ -1,5 +1,5 @@
import torch
-from modules import paths
+import platform
from modules.sd_hijack_utils import CondFunc
from packaging import version
@@ -32,13 +32,17 @@ if has_mps:
# MPS fix for randn in torchsde
CondFunc('torchsde._brownian.brownian_interval._randn', lambda _, size, dtype, device, seed: torch.randn(size, dtype=dtype, device=torch.device("cpu"), generator=torch.Generator(torch.device("cpu")).manual_seed(int(seed))).to(device), lambda _, size, dtype, device, seed: device.type == 'mps')
+ if platform.mac_ver()[0].startswith("13.2."):
+ # MPS workaround for https://github.com/pytorch/pytorch/issues/95188, thanks to danieldk (https://github.com/explosion/curated-transformers/pull/124)
+ CondFunc('torch.nn.functional.linear', lambda _, input, weight, bias: (torch.matmul(input, weight.t()) + bias) if bias is not None else torch.matmul(input, weight.t()), lambda _, input, weight, bias: input.numel() > 10485760)
+
if version.parse(torch.__version__) < version.parse("1.13"):
# PyTorch 1.13 doesn't need these fixes but unfortunately is slower and has regressions that prevent training from working
# MPS workaround for https://github.com/pytorch/pytorch/issues/79383
CondFunc('torch.Tensor.to', lambda orig_func, self, *args, **kwargs: orig_func(self.contiguous(), *args, **kwargs),
lambda _, self, *args, **kwargs: self.device.type != 'mps' and (args and isinstance(args[0], torch.device) and args[0].type == 'mps' or isinstance(kwargs.get('device'), torch.device) and kwargs['device'].type == 'mps'))
- # MPS workaround for https://github.com/pytorch/pytorch/issues/80800
+ # MPS workaround for https://github.com/pytorch/pytorch/issues/80800
CondFunc('torch.nn.functional.layer_norm', lambda orig_func, *args, **kwargs: orig_func(*([args[0].contiguous()] + list(args[1:])), **kwargs),
lambda _, *args, **kwargs: args and isinstance(args[0], torch.Tensor) and args[0].device.type == 'mps')
# MPS workaround for https://github.com/pytorch/pytorch/issues/90532
@@ -50,3 +54,10 @@ if has_mps:
CondFunc('torch.Tensor.cumsum', cumsum_fix_func, None)
CondFunc('torch.narrow', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).clone(), None)
+ # MPS workaround for https://github.com/pytorch/pytorch/issues/96113
+ CondFunc('torch.nn.functional.layer_norm', lambda orig_func, x, normalized_shape, weight, bias, eps, **kwargs: orig_func(x.float(), normalized_shape, weight.float() if weight is not None else None, bias.float() if bias is not None else bias, eps).to(x.dtype), lambda _, input, *args, **kwargs: len(args) == 4 and input.device.type == 'mps')
+
+ # MPS workaround for https://github.com/pytorch/pytorch/issues/92311
+ if platform.processor() == 'i386':
+ for funcName in ['torch.argmax', 'torch.Tensor.argmax']:
+ CondFunc(funcName, lambda _, input, *args, **kwargs: torch.max(input.float() if input.dtype == torch.int64 else input, *args, **kwargs)[1], lambda _, input, *args, **kwargs: input.device.type == 'mps')