aboutsummaryrefslogtreecommitdiffstats
path: root/modules/mac_specific.py
diff options
context:
space:
mode:
Diffstat (limited to 'modules/mac_specific.py')
-rw-r--r--modules/mac_specific.py22
1 files changed, 17 insertions, 5 deletions
diff --git a/modules/mac_specific.py b/modules/mac_specific.py
index 9ceb43ba..d96d86d7 100644
--- a/modules/mac_specific.py
+++ b/modules/mac_specific.py
@@ -1,9 +1,11 @@
import logging
import torch
+from torch import Tensor
import platform
from modules.sd_hijack_utils import CondFunc
from packaging import version
+from modules import shared
log = logging.getLogger(__name__)
@@ -30,8 +32,7 @@ has_mps = check_for_mps()
def torch_mps_gc() -> None:
try:
- from modules.shared import state
- if state.current_latent is not None:
+ if shared.state.current_latent is not None:
log.debug("`current_latent` is set, skipping MPS garbage collection")
return
from torch.mps import empty_cache
@@ -51,10 +52,18 @@ def cumsum_fix(input, cumsum_func, *args, **kwargs):
return cumsum_func(input, *args, **kwargs)
-if has_mps:
- # MPS fix for randn in torchsde
- CondFunc('torchsde._brownian.brownian_interval._randn', lambda _, size, dtype, device, seed: torch.randn(size, dtype=dtype, device=torch.device("cpu"), generator=torch.Generator(torch.device("cpu")).manual_seed(int(seed))).to(device), lambda _, size, dtype, device, seed: device.type == 'mps')
+# MPS workaround for https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14046
+def interpolate_with_fp32_fallback(orig_func, *args, **kwargs) -> Tensor:
+ try:
+ return orig_func(*args, **kwargs)
+ except RuntimeError as e:
+ if "not implemented for" in str(e) and "Half" in str(e):
+ input_tensor = args[0]
+ return orig_func(input_tensor.to(torch.float32), *args[1:], **kwargs).to(input_tensor.dtype)
+ else:
+ print(f"An unexpected RuntimeError occurred: {str(e)}")
+if has_mps:
if platform.mac_ver()[0].startswith("13.2."):
# MPS workaround for https://github.com/pytorch/pytorch/issues/95188, thanks to danieldk (https://github.com/explosion/curated-transformers/pull/124)
CondFunc('torch.nn.functional.linear', lambda _, input, weight, bias: (torch.matmul(input, weight.t()) + bias) if bias is not None else torch.matmul(input, weight.t()), lambda _, input, weight, bias: input.numel() > 10485760)
@@ -80,6 +89,9 @@ if has_mps:
# MPS workaround for https://github.com/pytorch/pytorch/issues/96113
CondFunc('torch.nn.functional.layer_norm', lambda orig_func, x, normalized_shape, weight, bias, eps, **kwargs: orig_func(x.float(), normalized_shape, weight.float() if weight is not None else None, bias.float() if bias is not None else bias, eps).to(x.dtype), lambda _, input, *args, **kwargs: len(args) == 4 and input.device.type == 'mps')
+ # MPS workaround for https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14046
+ CondFunc('torch.nn.functional.interpolate', interpolate_with_fp32_fallback, None)
+
# MPS workaround for https://github.com/pytorch/pytorch/issues/92311
if platform.processor() == 'i386':
for funcName in ['torch.argmax', 'torch.Tensor.argmax']: