aboutsummaryrefslogtreecommitdiffstats
path: root/modules/processing.py
diff options
context:
space:
mode:
Diffstat (limited to 'modules/processing.py')
-rw-r--r--modules/processing.py110
1 files changed, 94 insertions, 16 deletions
diff --git a/modules/processing.py b/modules/processing.py
index 6d9c6a8d..2b8dd361 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -2,7 +2,7 @@ import json
import math
import os
import sys
-import warnings
+import hashlib
import torch
import numpy as np
@@ -10,10 +10,10 @@ from PIL import Image, ImageFilter, ImageOps
import random
import cv2
from skimage import exposure
-from typing import Any, Dict, List, Optional
+from typing import Any, Dict, List
import modules.sd_hijack
-from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, script_callbacks, extra_networks, sd_vae_approx, scripts
+from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common
from modules.sd_hijack import model_hijack
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
@@ -30,6 +30,7 @@ from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion
from einops import repeat, rearrange
from blendmodes.blend import blendLayers, BlendType
+
# some of those options should not be changed at all because they would break the model, so I removed them from options.
opt_C = 4
opt_f = 8
@@ -105,7 +106,7 @@ class StableDiffusionProcessing:
"""
The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
"""
- def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None):
+ def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None):
if sampler_index is not None:
print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
@@ -140,6 +141,7 @@ class StableDiffusionProcessing:
self.denoising_strength: float = denoising_strength
self.sampler_noise_scheduler_override = None
self.ddim_discretize = ddim_discretize or opts.ddim_discretize
+ self.s_min_uncond = s_min_uncond or opts.s_min_uncond
self.s_churn = s_churn or opts.s_churn
self.s_tmin = s_tmin or opts.s_tmin
self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option
@@ -148,6 +150,8 @@ class StableDiffusionProcessing:
self.override_settings_restore_afterwards = override_settings_restore_afterwards
self.is_using_inpainting_conditioning = False
self.disable_extra_networks = False
+ self.token_merging_ratio = 0
+ self.token_merging_ratio_hr = 0
if not seed_enable_extras:
self.subseed = -1
@@ -162,6 +166,9 @@ class StableDiffusionProcessing:
self.all_seeds = None
self.all_subseeds = None
self.iteration = 0
+ self.is_hr_pass = False
+ self.sampler = None
+
@property
def sd_model(self):
@@ -270,6 +277,12 @@ class StableDiffusionProcessing:
def close(self):
self.sampler = None
+ def get_token_merging_ratio(self, for_hr=False):
+ if for_hr:
+ return self.token_merging_ratio_hr or opts.token_merging_ratio_hr or self.token_merging_ratio or opts.token_merging_ratio
+
+ return self.token_merging_ratio or opts.token_merging_ratio
+
class Processed:
def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None, comments=""):
@@ -299,6 +312,8 @@ class Processed:
self.styles = p.styles
self.job_timestamp = state.job_timestamp
self.clip_skip = opts.CLIP_stop_at_last_layers
+ self.token_merging_ratio = p.token_merging_ratio
+ self.token_merging_ratio_hr = p.token_merging_ratio_hr
self.eta = p.eta
self.ddim_discretize = p.ddim_discretize
@@ -306,6 +321,7 @@ class Processed:
self.s_tmin = p.s_tmin
self.s_tmax = p.s_tmax
self.s_noise = p.s_noise
+ self.s_min_uncond = p.s_min_uncond
self.sampler_noise_scheduler_override = p.sampler_noise_scheduler_override
self.prompt = self.prompt if type(self.prompt) != list else self.prompt[0]
self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0]
@@ -356,6 +372,9 @@ class Processed:
def infotext(self, p: StableDiffusionProcessing, index):
return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)
+ def get_token_merging_ratio(self, for_hr=False):
+ return self.token_merging_ratio_hr if for_hr else self.token_merging_ratio
+
# from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475/3
def slerp(val, low, high):
@@ -454,10 +473,27 @@ def fix_seed(p):
p.subseed = get_fixed_seed(p.subseed)
+def program_version():
+ import launch
+
+ res = launch.git_tag()
+ if res == "<none>":
+ res = None
+
+ return res
+
+
def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0):
index = position_in_batch + iteration * p.batch_size
clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
+ enable_hr = getattr(p, 'enable_hr', False)
+ token_merging_ratio = p.get_token_merging_ratio()
+ token_merging_ratio_hr = p.get_token_merging_ratio(for_hr=True)
+
+ uses_ensd = opts.eta_noise_seed_delta != 0
+ if uses_ensd:
+ uses_ensd = sd_samplers_common.is_sampler_using_eta_noise_seed_delta(p)
generation_params = {
"Steps": p.steps,
@@ -475,14 +511,19 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
"Denoising strength": getattr(p, 'denoising_strength', None),
"Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
"Clip skip": None if clip_skip <= 1 else clip_skip,
- "ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta,
+ "ENSD": opts.eta_noise_seed_delta if uses_ensd else None,
+ "Token merging ratio": None if token_merging_ratio == 0 else token_merging_ratio,
+ "Token merging ratio hr": None if not enable_hr or token_merging_ratio_hr == 0 else token_merging_ratio_hr,
+ "Init image hash": getattr(p, 'init_img_hash', None),
+ "RNG": opts.randn_source if opts.randn_source != "GPU" else None,
+ "NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
+ **p.extra_generation_params,
+ "Version": program_version() if opts.add_version_to_infotext else None,
}
- generation_params.update(p.extra_generation_params)
-
generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
- negative_prompt_text = "\nNegative prompt: " + p.all_negative_prompts[index] if p.all_negative_prompts[index] else ""
+ negative_prompt_text = f"\nNegative prompt: {p.all_negative_prompts[index]}" if p.all_negative_prompts[index] else ""
return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip()
@@ -491,6 +532,11 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
stored_opts = {k: opts.data[k] for k in p.override_settings.keys()}
try:
+ # if no checkpoint override or the override checkpoint can't be found, remove override entry and load opts checkpoint
+ if sd_models.checkpoint_alisases.get(p.override_settings.get('sd_model_checkpoint')) is None:
+ p.override_settings.pop('sd_model_checkpoint', None)
+ sd_models.reload_model_weights()
+
for k, v in p.override_settings.items():
setattr(opts, k, v)
@@ -500,15 +546,17 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
if k == 'sd_vae':
sd_vae.reload_vae_weights()
+ sd_models.apply_token_merging(p.sd_model, p.get_token_merging_ratio())
+
res = process_images_inner(p)
finally:
+ sd_models.apply_token_merging(p.sd_model, 0)
+
# restore opts to original state
if p.override_settings_restore_afterwards:
for k, v in stored_opts.items():
setattr(opts, k, v)
- if k == 'sd_model_checkpoint':
- sd_models.reload_model_weights()
if k == 'sd_vae':
sd_vae.reload_vae_weights()
@@ -639,8 +687,10 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
processed = Processed(p, [], p.seed, "")
file.write(processed.infotext(p, 0))
- uc = get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, p.steps, cached_uc)
- c = get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, p.steps, cached_c)
+ sampler_config = sd_samplers.find_sampler_config(p.sampler_name)
+ step_multiplier = 2 if sampler_config and sampler_config.options.get("second_order", False) else 1
+ uc = get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, p.steps * step_multiplier, cached_uc)
+ c = get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, p.steps * step_multiplier, cached_c)
if len(model_hijack.comments) > 0:
for comment in model_hijack.comments:
@@ -670,6 +720,8 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n)
for i, x_sample in enumerate(x_samples_ddim):
+ p.batch_index = i
+
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8)
@@ -706,9 +758,9 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
image.info["parameters"] = text
output_images.append(image)
- if hasattr(p, 'mask_for_overlay') and p.mask_for_overlay:
+ if hasattr(p, 'mask_for_overlay') and p.mask_for_overlay and any([opts.save_mask, opts.save_mask_composite, opts.return_mask, opts.return_mask_composite]):
image_mask = p.mask_for_overlay.convert('RGB')
- image_mask_composite = Image.composite(image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), p.mask_for_overlay.convert('L')).convert('RGBA')
+ image_mask_composite = Image.composite(image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, p.mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA')
if opts.save_mask:
images.save_image(image_mask, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask")
@@ -718,7 +770,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if opts.return_mask:
output_images.append(image_mask)
-
+
if opts.return_mask_composite:
output_images.append(image_mask_composite)
@@ -751,7 +803,16 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
devices.torch_gc()
- res = Processed(p, output_images, p.all_seeds[0], infotext(), comments="".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], index_of_first_image=index_of_first_image, infotexts=infotexts)
+ res = Processed(
+ p,
+ images_list=output_images,
+ seed=p.all_seeds[0],
+ info=infotext(),
+ comments="".join(f"\n\n{comment}" for comment in comments),
+ subseed=p.all_subseeds[0],
+ index_of_first_image=index_of_first_image,
+ infotexts=infotexts,
+ )
if p.scripts is not None:
p.scripts.postprocess(p, res)
@@ -871,6 +932,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
if not self.enable_hr:
return samples
+ self.is_hr_pass = True
+
target_width = self.hr_upscale_to_x
target_height = self.hr_upscale_to_y
@@ -938,8 +1001,14 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
x = None
devices.torch_gc()
+ sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio(for_hr=True))
+
samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)
+ sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio())
+
+ self.is_hr_pass = False
+
return samples
@@ -1007,6 +1076,12 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.color_corrections = []
imgs = []
for img in self.init_images:
+
+ # Save init image
+ if opts.save_init_img:
+ self.init_img_hash = hashlib.md5(img.tobytes()).hexdigest()
+ images.save_image(img, path=opts.outdir_init_images, basename=None, forced_filename=self.init_img_hash, save_to_dirs=False)
+
image = images.flatten(img, opts.img2img_background_color)
if crop_region is None and self.resize_mode != 3:
@@ -1093,3 +1168,6 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
devices.torch_gc()
return samples
+
+ def get_token_merging_ratio(self, for_hr=False):
+ return self.token_merging_ratio or ("token_merging_ratio" in self.override_settings and opts.token_merging_ratio) or opts.token_merging_ratio_img2img or opts.token_merging_ratio