aboutsummaryrefslogtreecommitdiffstats
path: root/modules/processing.py
diff options
context:
space:
mode:
Diffstat (limited to 'modules/processing.py')
-rw-r--r--modules/processing.py11
1 files changed, 7 insertions, 4 deletions
diff --git a/modules/processing.py b/modules/processing.py
index a46e592d..03c9143d 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -501,6 +501,9 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if len(prompts) == 0:
break
+ if p.scripts is not None:
+ p.scripts.process_batch(p, batch_number=n, prompts=prompts, seeds=seeds, subseeds=subseeds)
+
with devices.autocast():
uc = prompt_parser.get_learned_conditioning(shared.sd_model, len(prompts) * [p.negative_prompt], p.steps)
c = prompt_parser.get_multicond_learned_conditioning(shared.sd_model, prompts, p.steps)
@@ -665,17 +668,17 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, suffix="-before-highres-fix")
if opts.use_scale_latent_for_hires_fix:
+ for i in range(samples.shape[0]):
+ save_intermediate(samples, i)
+
samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
-
+
# Avoid making the inpainting conditioning unless necessary as
# this does need some extra compute to decode / encode the image again.
if getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) < 1.0:
image_conditioning = self.img2img_image_conditioning(decode_first_stage(self.sd_model, samples), samples)
else:
image_conditioning = self.txt2img_image_conditioning(samples)
-
- for i in range(samples.shape[0]):
- save_intermediate(samples, i)
else:
decoded_samples = decode_first_stage(self.sd_model, samples)
lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)