aboutsummaryrefslogtreecommitdiffstats
path: root/modules/sd_models.py
diff options
context:
space:
mode:
Diffstat (limited to 'modules/sd_models.py')
-rw-r--r--modules/sd_models.py66
1 files changed, 59 insertions, 7 deletions
diff --git a/modules/sd_models.py b/modules/sd_models.py
index 5a19a00a..50bc209e 100644
--- a/modules/sd_models.py
+++ b/modules/sd_models.py
@@ -230,15 +230,19 @@ def select_checkpoint():
return checkpoint_info
-checkpoint_dict_replacements = {
+checkpoint_dict_replacements_sd1 = {
'cond_stage_model.transformer.embeddings.': 'cond_stage_model.transformer.text_model.embeddings.',
'cond_stage_model.transformer.encoder.': 'cond_stage_model.transformer.text_model.encoder.',
'cond_stage_model.transformer.final_layer_norm.': 'cond_stage_model.transformer.text_model.final_layer_norm.',
}
+checkpoint_dict_replacements_sd2_turbo = { # Converts SD 2.1 Turbo from SGM to LDM format.
+ 'conditioner.embedders.0.': 'cond_stage_model.',
+}
+
-def transform_checkpoint_dict_key(k):
- for text, replacement in checkpoint_dict_replacements.items():
+def transform_checkpoint_dict_key(k, replacements):
+ for text, replacement in replacements.items():
if k.startswith(text):
k = replacement + k[len(text):]
@@ -249,9 +253,14 @@ def get_state_dict_from_checkpoint(pl_sd):
pl_sd = pl_sd.pop("state_dict", pl_sd)
pl_sd.pop("state_dict", None)
+ is_sd2_turbo = 'conditioner.embedders.0.model.ln_final.weight' in pl_sd and pl_sd['conditioner.embedders.0.model.ln_final.weight'].size()[0] == 1024
+
sd = {}
for k, v in pl_sd.items():
- new_key = transform_checkpoint_dict_key(k)
+ if is_sd2_turbo:
+ new_key = transform_checkpoint_dict_key(k, checkpoint_dict_replacements_sd2_turbo)
+ else:
+ new_key = transform_checkpoint_dict_key(k, checkpoint_dict_replacements_sd1)
if new_key is not None:
sd[new_key] = v
@@ -339,10 +348,28 @@ class SkipWritingToConfig:
SkipWritingToConfig.skip = self.previous
+def check_fp8(model):
+ if model is None:
+ return None
+ if devices.get_optimal_device_name() == "mps":
+ enable_fp8 = False
+ elif shared.opts.fp8_storage == "Enable":
+ enable_fp8 = True
+ elif getattr(model, "is_sdxl", False) and shared.opts.fp8_storage == "Enable for SDXL":
+ enable_fp8 = True
+ else:
+ enable_fp8 = False
+ return enable_fp8
+
+
def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer):
sd_model_hash = checkpoint_info.calculate_shorthash()
timer.record("calculate hash")
+ if devices.fp8:
+ # prevent model to load state dict in fp8
+ model.half()
+
if not SkipWritingToConfig.skip:
shared.opts.data["sd_model_checkpoint"] = checkpoint_info.title
@@ -400,6 +427,28 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer
devices.dtype_unet = torch.float16
timer.record("apply half()")
+ for module in model.modules():
+ if hasattr(module, 'fp16_weight'):
+ del module.fp16_weight
+ if hasattr(module, 'fp16_bias'):
+ del module.fp16_bias
+
+ if check_fp8(model):
+ devices.fp8 = True
+ first_stage = model.first_stage_model
+ model.first_stage_model = None
+ for module in model.modules():
+ if isinstance(module, (torch.nn.Conv2d, torch.nn.Linear)):
+ if shared.opts.cache_fp16_weight:
+ module.fp16_weight = module.weight.data.clone().cpu().half()
+ if module.bias is not None:
+ module.fp16_bias = module.bias.data.clone().cpu().half()
+ module.to(torch.float8_e4m3fn)
+ model.first_stage_model = first_stage
+ timer.record("apply fp8")
+ else:
+ devices.fp8 = False
+
devices.unet_needs_upcast = shared.cmd_opts.upcast_sampling and devices.dtype == torch.float16 and devices.dtype_unet == torch.float16
model.first_stage_model.to(devices.dtype_vae)
@@ -743,7 +792,7 @@ def reuse_model_from_already_loaded(sd_model, checkpoint_info, timer):
return None
-def reload_model_weights(sd_model=None, info=None):
+def reload_model_weights(sd_model=None, info=None, forced_reload=False):
checkpoint_info = info or select_checkpoint()
timer = Timer()
@@ -755,11 +804,14 @@ def reload_model_weights(sd_model=None, info=None):
current_checkpoint_info = None
else:
current_checkpoint_info = sd_model.sd_checkpoint_info
- if sd_model.sd_model_checkpoint == checkpoint_info.filename:
+ if check_fp8(sd_model) != devices.fp8:
+ # load from state dict again to prevent extra numerical errors
+ forced_reload = True
+ elif sd_model.sd_model_checkpoint == checkpoint_info.filename and not forced_reload:
return sd_model
sd_model = reuse_model_from_already_loaded(sd_model, checkpoint_info, timer)
- if sd_model is not None and sd_model.sd_checkpoint_info.filename == checkpoint_info.filename:
+ if not forced_reload and sd_model is not None and sd_model.sd_checkpoint_info.filename == checkpoint_info.filename:
return sd_model
if sd_model is not None: