aboutsummaryrefslogtreecommitdiffstats
path: root/modules/sd_models.py
diff options
context:
space:
mode:
Diffstat (limited to 'modules/sd_models.py')
-rw-r--r--modules/sd_models.py93
1 files changed, 84 insertions, 9 deletions
diff --git a/modules/sd_models.py b/modules/sd_models.py
index 300387a9..4f7613a1 100644
--- a/modules/sd_models.py
+++ b/modules/sd_models.py
@@ -52,6 +52,15 @@ class CheckpointInfo:
self.ids = [self.hash, self.model_name, self.title, name, f'{name} [{self.hash}]'] + ([self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]'] if self.shorthash else [])
+ self.metadata = {}
+
+ _, ext = os.path.splitext(self.filename)
+ if ext.lower() == ".safetensors":
+ try:
+ self.metadata = read_metadata_from_safetensors(filename)
+ except Exception as e:
+ errors.display(e, f"reading checkpoint metadata: {filename}")
+
def register(self):
checkpoints_list[self.title] = self
for id in self.ids:
@@ -59,13 +68,17 @@ class CheckpointInfo:
def calculate_shorthash(self):
self.sha256 = hashes.sha256(self.filename, "checkpoint/" + self.name)
+ if self.sha256 is None:
+ return
+
self.shorthash = self.sha256[0:10]
if self.shorthash not in self.ids:
- self.ids += [self.shorthash, self.sha256]
- self.register()
+ self.ids += [self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]']
+ checkpoints_list.pop(self.title)
self.title = f'{self.name} [{self.shorthash}]'
+ self.register()
return self.shorthash
@@ -101,9 +114,15 @@ def checkpoint_tiles():
def list_models():
checkpoints_list.clear()
checkpoint_alisases.clear()
- model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"], ext_blacklist=[".vae.safetensors"])
cmd_ckpt = shared.cmd_opts.ckpt
+ if shared.cmd_opts.no_download_sd_model or cmd_ckpt != shared.sd_model_file or os.path.exists(cmd_ckpt):
+ model_url = None
+ else:
+ model_url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors"
+
+ model_list = modelloader.load_models(model_path=model_path, model_url=model_url, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"], download_name="v1-5-pruned-emaonly.safetensors", ext_blacklist=[".vae.ckpt", ".vae.safetensors"])
+
if os.path.exists(cmd_ckpt):
checkpoint_info = CheckpointInfo(cmd_ckpt)
checkpoint_info.register()
@@ -112,7 +131,7 @@ def list_models():
elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file:
print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr)
- for filename in model_list:
+ for filename in sorted(model_list, key=str.lower):
checkpoint_info = CheckpointInfo(filename)
checkpoint_info.register()
@@ -158,7 +177,7 @@ def select_checkpoint():
print(f" - directory {model_path}", file=sys.stderr)
if shared.cmd_opts.ckpt_dir is not None:
print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr)
- print("Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr)
+ print("Can't run without a checkpoint. Find and place a .ckpt or .safetensors file into any of those locations. The program will exit.", file=sys.stderr)
exit(1)
checkpoint_info = next(iter(checkpoints_list.values()))
@@ -168,7 +187,7 @@ def select_checkpoint():
return checkpoint_info
-chckpoint_dict_replacements = {
+checkpoint_dict_replacements = {
'cond_stage_model.transformer.embeddings.': 'cond_stage_model.transformer.text_model.embeddings.',
'cond_stage_model.transformer.encoder.': 'cond_stage_model.transformer.text_model.encoder.',
'cond_stage_model.transformer.final_layer_norm.': 'cond_stage_model.transformer.text_model.final_layer_norm.',
@@ -176,7 +195,7 @@ chckpoint_dict_replacements = {
def transform_checkpoint_dict_key(k):
- for text, replacement in chckpoint_dict_replacements.items():
+ for text, replacement in checkpoint_dict_replacements.items():
if k.startswith(text):
k = replacement + k[len(text):]
@@ -200,6 +219,30 @@ def get_state_dict_from_checkpoint(pl_sd):
return pl_sd
+def read_metadata_from_safetensors(filename):
+ import json
+
+ with open(filename, mode="rb") as file:
+ metadata_len = file.read(8)
+ metadata_len = int.from_bytes(metadata_len, "little")
+ json_start = file.read(2)
+
+ assert metadata_len > 2 and json_start in (b'{"', b"{'"), f"{filename} is not a safetensors file"
+ json_data = json_start + file.read(metadata_len-2)
+ json_obj = json.loads(json_data)
+
+ res = {}
+ for k, v in json_obj.get("__metadata__", {}).items():
+ res[k] = v
+ if isinstance(v, str) and v[0:1] == '{':
+ try:
+ res[k] = json.loads(v)
+ except Exception as e:
+ pass
+
+ return res
+
+
def read_state_dict(checkpoint_file, print_global_state=False, map_location=None):
_, extension = os.path.splitext(checkpoint_file)
if extension.lower() == ".safetensors":
@@ -349,6 +392,17 @@ def repair_config(sd_config):
elif shared.cmd_opts.upcast_sampling:
sd_config.model.params.unet_config.params.use_fp16 = True
+ if getattr(sd_config.model.params.first_stage_config.params.ddconfig, "attn_type", None) == "vanilla-xformers" and not shared.xformers_available:
+ sd_config.model.params.first_stage_config.params.ddconfig.attn_type = "vanilla"
+
+ # For UnCLIP-L, override the hardcoded karlo directory
+ if hasattr(sd_config.model.params, "noise_aug_config") and hasattr(sd_config.model.params.noise_aug_config.params, "clip_stats_path"):
+ karlo_path = os.path.join(paths.models_path, 'karlo')
+ sd_config.model.params.noise_aug_config.params.clip_stats_path = sd_config.model.params.noise_aug_config.params.clip_stats_path.replace("checkpoints/karlo_models", karlo_path)
+
+
+sd1_clip_weight = 'cond_stage_model.transformer.text_model.embeddings.token_embedding.weight'
+sd2_clip_weight = 'cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight'
def load_model(checkpoint_info=None, already_loaded_state_dict=None, time_taken_to_load_state_dict=None):
from modules import lowvram, sd_hijack
@@ -370,6 +424,7 @@ def load_model(checkpoint_info=None, already_loaded_state_dict=None, time_taken_
state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info)
+ clip_is_included_into_sd = sd1_clip_weight in state_dict or sd2_clip_weight in state_dict
timer.record("find config")
@@ -382,7 +437,7 @@ def load_model(checkpoint_info=None, already_loaded_state_dict=None, time_taken_
sd_model = None
try:
- with sd_disable_initialization.DisableInitialization():
+ with sd_disable_initialization.DisableInitialization(disable_clip=clip_is_included_into_sd):
sd_model = instantiate_from_config(sd_config.model)
except Exception as e:
pass
@@ -456,7 +511,7 @@ def reload_model_weights(sd_model=None, info=None):
if sd_model is None or checkpoint_config != sd_model.used_config:
del sd_model
checkpoints_loaded.clear()
- load_model(checkpoint_info, already_loaded_state_dict=state_dict, time_taken_to_load_state_dict=timer.records["load weights from disk"])
+ load_model(checkpoint_info, already_loaded_state_dict=state_dict)
return shared.sd_model
try:
@@ -479,3 +534,23 @@ def reload_model_weights(sd_model=None, info=None):
print(f"Weights loaded in {timer.summary()}.")
return sd_model
+
+def unload_model_weights(sd_model=None, info=None):
+ from modules import lowvram, devices, sd_hijack
+ timer = Timer()
+
+ if shared.sd_model:
+
+ # shared.sd_model.cond_stage_model.to(devices.cpu)
+ # shared.sd_model.first_stage_model.to(devices.cpu)
+ shared.sd_model.to(devices.cpu)
+ sd_hijack.model_hijack.undo_hijack(shared.sd_model)
+ shared.sd_model = None
+ sd_model = None
+ gc.collect()
+ devices.torch_gc()
+ torch.cuda.empty_cache()
+
+ print(f"Unloaded weights {timer.summary()}.")
+
+ return sd_model