aboutsummaryrefslogtreecommitdiffstats
path: root/modules/sd_models_xl.py
diff options
context:
space:
mode:
Diffstat (limited to 'modules/sd_models_xl.py')
-rw-r--r--modules/sd_models_xl.py8
1 files changed, 7 insertions, 1 deletions
diff --git a/modules/sd_models_xl.py b/modules/sd_models_xl.py
index 01123321..1de31b0d 100644
--- a/modules/sd_models_xl.py
+++ b/modules/sd_models_xl.py
@@ -34,6 +34,12 @@ def get_learned_conditioning(self: sgm.models.diffusion.DiffusionEngine, batch:
def apply_model(self: sgm.models.diffusion.DiffusionEngine, x, t, cond):
+ sd = self.model.state_dict()
+ diffusion_model_input = sd.get('diffusion_model.input_blocks.0.0.weight', None)
+ if diffusion_model_input is not None:
+ if diffusion_model_input.shape[1] == 9:
+ x = torch.cat([x] + cond['c_concat'], dim=1)
+
return self.model(x, t, cond)
@@ -93,7 +99,7 @@ def extend_sdxl(model):
model.parameterization = "v" if isinstance(model.denoiser.scaling, sgm.modules.diffusionmodules.denoiser_scaling.VScaling) else "eps"
discretization = sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization()
- model.alphas_cumprod = torch.asarray(discretization.alphas_cumprod, device=devices.device, dtype=dtype)
+ model.alphas_cumprod = torch.asarray(discretization.alphas_cumprod, device=devices.device, dtype=torch.float32)
model.conditioner.wrapped = torch.nn.Module()