aboutsummaryrefslogtreecommitdiffstats
path: root/modules/sd_samplers.py
diff options
context:
space:
mode:
Diffstat (limited to 'modules/sd_samplers.py')
-rw-r--r--modules/sd_samplers.py19
1 files changed, 14 insertions, 5 deletions
diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py
index f58a29b9..3670b57d 100644
--- a/modules/sd_samplers.py
+++ b/modules/sd_samplers.py
@@ -7,7 +7,7 @@ import inspect
import k_diffusion.sampling
import ldm.models.diffusion.ddim
import ldm.models.diffusion.plms
-from modules import prompt_parser, devices, processing
+from modules import prompt_parser, devices, processing, images
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
@@ -71,6 +71,7 @@ sampler_extra_params = {
'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
}
+
def setup_img2img_steps(p, steps=None):
if opts.img2img_fix_steps or steps is not None:
steps = int((steps or p.steps) / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0
@@ -82,14 +83,22 @@ def setup_img2img_steps(p, steps=None):
return steps, t_enc
-def sample_to_image(samples):
- x_sample = processing.decode_first_stage(shared.sd_model, samples[0:1])[0]
+def single_sample_to_image(sample):
+ x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0]
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8)
return Image.fromarray(x_sample)
+def sample_to_image(samples):
+ return single_sample_to_image(samples[0])
+
+
+def samples_to_image_grid(samples):
+ return images.image_grid([single_sample_to_image(sample) for sample in samples])
+
+
def store_latent(decoded):
state.current_latent = decoded
@@ -219,7 +228,7 @@ class VanillaStableDiffusionSampler:
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
- samples = self.launch_sampling(steps, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning))
+ samples = self.launch_sampling(t_enc + 1, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning))
return samples
@@ -420,7 +429,7 @@ class KDiffusionSampler:
self.model_wrap_cfg.init_latent = x
self.last_latent = x
- samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, xi, extra_args={
+ samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args={
'cond': conditioning,
'image_cond': image_conditioning,
'uncond': unconditional_conditioning,