aboutsummaryrefslogtreecommitdiffstats
path: root/modules/sd_samplers.py
diff options
context:
space:
mode:
Diffstat (limited to 'modules/sd_samplers.py')
-rw-r--r--modules/sd_samplers.py40
1 files changed, 40 insertions, 0 deletions
diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py
index 5d95bfe0..02ffce0e 100644
--- a/modules/sd_samplers.py
+++ b/modules/sd_samplers.py
@@ -80,8 +80,12 @@ class VanillaStableDiffusionSampler:
self.mask = None
self.nmask = None
self.init_latent = None
+ self.sampler_noises = None
self.step = 0
+ def number_of_needed_noises(self, p):
+ return 0
+
def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs):
cond = prompt_parser.reconstruct_cond_batch(cond, self.step)
unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step)
@@ -185,16 +189,46 @@ def extended_trange(count, *args, **kwargs):
shared.total_tqdm.update()
+class TorchHijack:
+ def __init__(self, kdiff_sampler):
+ self.kdiff_sampler = kdiff_sampler
+
+ def __getattr__(self, item):
+ if item == 'randn_like':
+ return self.kdiff_sampler.randn_like
+
+ if hasattr(torch, item):
+ return getattr(torch, item)
+
+ raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
+
+
class KDiffusionSampler:
def __init__(self, funcname, sd_model):
self.model_wrap = k_diffusion.external.CompVisDenoiser(sd_model, quantize=shared.opts.enable_quantization)
self.funcname = funcname
self.func = getattr(k_diffusion.sampling, self.funcname)
self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
+ self.sampler_noises = None
+ self.sampler_noise_index = 0
def callback_state(self, d):
store_latent(d["denoised"])
+ def number_of_needed_noises(self, p):
+ return p.steps
+
+ def randn_like(self, x):
+ noise = self.sampler_noises[self.sampler_noise_index] if self.sampler_noises is not None and self.sampler_noise_index < len(self.sampler_noises) else None
+
+ if noise is not None and x.shape == noise.shape:
+ res = noise
+ else:
+ res = torch.randn_like(x)
+
+ self.sampler_noise_index += 1
+ return res
+
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning):
t_enc = int(min(p.denoising_strength, 0.999) * p.steps)
sigmas = self.model_wrap.get_sigmas(p.steps)
@@ -213,6 +247,9 @@ class KDiffusionSampler:
if hasattr(k_diffusion.sampling, 'trange'):
k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(*args, **kwargs)
+ if self.sampler_noises is not None:
+ k_diffusion.sampling.torch = TorchHijack(self)
+
return self.func(self.model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state)
def sample(self, p, x, conditioning, unconditional_conditioning):
@@ -224,6 +261,9 @@ class KDiffusionSampler:
if hasattr(k_diffusion.sampling, 'trange'):
k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(*args, **kwargs)
+ if self.sampler_noises is not None:
+ k_diffusion.sampling.torch = TorchHijack(self)
+
samples_ddim = self.func(self.model_wrap_cfg, x, sigmas, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state)
return samples_ddim