diff options
Diffstat (limited to 'modules/sd_samplers_kdiffusion.py')
-rw-r--r-- | modules/sd_samplers_kdiffusion.py | 17 |
1 files changed, 10 insertions, 7 deletions
diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index 5552a8dc..8bb639f5 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -2,7 +2,7 @@ from collections import deque import torch
import inspect
import k_diffusion.sampling
-from modules import prompt_parser, devices, sd_samplers_common
+from modules import prompt_parser, devices, sd_samplers_common, sd_samplers_extra
from modules.shared import opts, state
import modules.shared as shared
@@ -30,12 +30,15 @@ samplers_k_diffusion = [ ('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras', "second_order": True, "brownian_noise": True}),
('DPM++ 2M SDE Karras', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {'scheduler': 'karras', "brownian_noise": True}),
+ ('DPM++ 2M SDE Exponential', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_exp'], {'scheduler': 'exponential', "brownian_noise": True}),
+ ('Restart', sd_samplers_extra.restart_sampler, ['restart'], {'scheduler': 'karras'}),
]
+
samplers_data_k_diffusion = [
sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
for label, funcname, aliases, options in samplers_k_diffusion
- if hasattr(k_diffusion.sampling, funcname)
+ if callable(funcname) or hasattr(k_diffusion.sampling, funcname)
]
sampler_extra_params = {
@@ -258,10 +261,7 @@ class TorchHijack: if noise.shape == x.shape:
return noise
- if opts.randn_source == "CPU" or x.device.type == 'mps':
- return torch.randn_like(x, device=devices.cpu).to(x.device)
- else:
- return torch.randn_like(x)
+ return devices.randn_like(x)
class KDiffusionSampler:
@@ -270,7 +270,7 @@ class KDiffusionSampler: self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization)
self.funcname = funcname
- self.func = getattr(k_diffusion.sampling, self.funcname)
+ self.func = funcname if callable(funcname) else getattr(k_diffusion.sampling, self.funcname)
self.extra_params = sampler_extra_params.get(funcname, [])
self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
self.sampler_noises = None
@@ -376,6 +376,9 @@ class KDiffusionSampler: sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=shared.device)
+ elif self.config is not None and self.config.options.get('scheduler', None) == 'exponential':
+ m_sigma_min, m_sigma_max = (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
+ sigmas = k_diffusion.sampling.get_sigmas_exponential(n=steps, sigma_min=m_sigma_min, sigma_max=m_sigma_max, device=shared.device)
else:
sigmas = self.model_wrap.get_sigmas(steps)
|