diff options
Diffstat (limited to 'modules/soft_inpainting.py')
-rw-r--r-- | modules/soft_inpainting.py | 308 |
1 files changed, 0 insertions, 308 deletions
diff --git a/modules/soft_inpainting.py b/modules/soft_inpainting.py deleted file mode 100644 index b36ac8fa..00000000 --- a/modules/soft_inpainting.py +++ /dev/null @@ -1,308 +0,0 @@ -class SoftInpaintingSettings: - def __init__(self, mask_blend_power, mask_blend_scale, inpaint_detail_preservation): - self.mask_blend_power = mask_blend_power - self.mask_blend_scale = mask_blend_scale - self.inpaint_detail_preservation = inpaint_detail_preservation - - def add_generation_params(self, dest): - dest[enabled_gen_param_label] = True - dest[gen_param_labels.mask_blend_power] = self.mask_blend_power - dest[gen_param_labels.mask_blend_scale] = self.mask_blend_scale - dest[gen_param_labels.inpaint_detail_preservation] = self.inpaint_detail_preservation - - -# ------------------- Methods ------------------- - - -def latent_blend(soft_inpainting, a, b, t): - """ - Interpolates two latent image representations according to the parameter t, - where the interpolated vectors' magnitudes are also interpolated separately. - The "detail_preservation" factor biases the magnitude interpolation towards - the larger of the two magnitudes. - """ - import torch - - # NOTE: We use inplace operations wherever possible. - - # [4][w][h] to [1][4][w][h] - t2 = t.unsqueeze(0) - # [4][w][h] to [1][1][w][h] - the [4] seem redundant. - t3 = t[0].unsqueeze(0).unsqueeze(0) - - one_minus_t2 = 1 - t2 - one_minus_t3 = 1 - t3 - - # Linearly interpolate the image vectors. - a_scaled = a * one_minus_t2 - b_scaled = b * t2 - image_interp = a_scaled - image_interp.add_(b_scaled) - result_type = image_interp.dtype - del a_scaled, b_scaled, t2, one_minus_t2 - - # Calculate the magnitude of the interpolated vectors. (We will remove this magnitude.) - # 64-bit operations are used here to allow large exponents. - current_magnitude = torch.norm(image_interp, p=2, dim=1, keepdim=True).to(torch.float64).add_(0.00001) - - # Interpolate the powered magnitudes, then un-power them (bring them back to a power of 1). - a_magnitude = torch.norm(a, p=2, dim=1, keepdim=True).to(torch.float64).pow_(soft_inpainting.inpaint_detail_preservation) * one_minus_t3 - b_magnitude = torch.norm(b, p=2, dim=1, keepdim=True).to(torch.float64).pow_(soft_inpainting.inpaint_detail_preservation) * t3 - desired_magnitude = a_magnitude - desired_magnitude.add_(b_magnitude).pow_(1 / soft_inpainting.inpaint_detail_preservation) - del a_magnitude, b_magnitude, t3, one_minus_t3 - - # Change the linearly interpolated image vectors' magnitudes to the value we want. - # This is the last 64-bit operation. - image_interp_scaling_factor = desired_magnitude - image_interp_scaling_factor.div_(current_magnitude) - image_interp_scaling_factor = image_interp_scaling_factor.to(result_type) - image_interp_scaled = image_interp - image_interp_scaled.mul_(image_interp_scaling_factor) - del current_magnitude - del desired_magnitude - del image_interp - del image_interp_scaling_factor - del result_type - - return image_interp_scaled - - -def get_modified_nmask(soft_inpainting, nmask, sigma): - """ - Converts a negative mask representing the transparency of the original latent vectors being overlayed - to a mask that is scaled according to the denoising strength for this step. - - Where: - 0 = fully opaque, infinite density, fully masked - 1 = fully transparent, zero density, fully unmasked - - We bring this transparency to a power, as this allows one to simulate N number of blending operations - where N can be any positive real value. Using this one can control the balance of influence between - the denoiser and the original latents according to the sigma value. - - NOTE: "mask" is not used - """ - import torch - # todo: Why is sigma 2D? Both values are the same. - return torch.pow(nmask, (sigma[0] ** soft_inpainting.mask_blend_power) * soft_inpainting.mask_blend_scale) - - -def apply_adaptive_masks( - latent_orig, - latent_processed, - overlay_images, - masks_for_overlay, - width, height, - paste_to): - import torch - import numpy as np - import modules.processing as proc - import modules.images as images - from PIL import Image, ImageOps, ImageFilter - - # TODO: Bias the blending according to the latent mask, add adjustable parameter for bias control. - # latent_mask = p.nmask[0].float().cpu() - # convert the original mask into a form we use to scale distances for thresholding - # mask_scalar = 1-(torch.clamp(latent_mask, min=0, max=1) ** (p.mask_blend_scale / 2)) - # mask_scalar = mask_scalar / (1.00001-mask_scalar) - # mask_scalar = mask_scalar.numpy() - - latent_distance = torch.norm(latent_processed - latent_orig, p=2, dim=1) - - kernel, kernel_center = images.get_gaussian_kernel(stddev_radius=1.5, max_radius=2) - - for i, (distance_map, overlay_image) in enumerate(zip(latent_distance, overlay_images)): - converted_mask = distance_map.float().cpu().numpy() - converted_mask = images.weighted_histogram_filter(converted_mask, kernel, kernel_center, - percentile_min=0.9, percentile_max=1, min_width=1) - converted_mask = images.weighted_histogram_filter(converted_mask, kernel, kernel_center, - percentile_min=0.25, percentile_max=0.75, min_width=1) - - # The distance at which opacity of original decreases to 50% - # half_weighted_distance = 1 # * mask_scalar - # converted_mask = converted_mask / half_weighted_distance - - converted_mask = 1 / (1 + converted_mask ** 2) - converted_mask = images.smootherstep(converted_mask) - converted_mask = 1 - converted_mask - converted_mask = 255. * converted_mask - converted_mask = converted_mask.astype(np.uint8) - converted_mask = Image.fromarray(converted_mask) - converted_mask = images.resize_image(2, converted_mask, width, height) - converted_mask = proc.create_binary_mask(converted_mask, round=False) - - # Remove aliasing artifacts using a gaussian blur. - converted_mask = converted_mask.filter(ImageFilter.GaussianBlur(radius=4)) - - # Expand the mask to fit the whole image if needed. - if paste_to is not None: - converted_mask = proc. uncrop(converted_mask, - (overlay_image.width, overlay_image.height), - paste_to) - - masks_for_overlay[i] = converted_mask - - image_masked = Image.new('RGBa', (overlay_image.width, overlay_image.height)) - image_masked.paste(overlay_image.convert("RGBA").convert("RGBa"), - mask=ImageOps.invert(converted_mask.convert('L'))) - - overlay_images[i] = image_masked.convert('RGBA') - -def apply_masks( - soft_inpainting, - nmask, - overlay_images, - masks_for_overlay, - width, height, - paste_to): - import torch - import numpy as np - import modules.processing as proc - import modules.images as images - from PIL import Image, ImageOps, ImageFilter - - converted_mask = nmask[0].float() - converted_mask = torch.clamp(converted_mask, min=0, max=1).pow_(soft_inpainting.mask_blend_scale / 2) - converted_mask = 255. * converted_mask - converted_mask = converted_mask.cpu().numpy().astype(np.uint8) - converted_mask = Image.fromarray(converted_mask) - converted_mask = images.resize_image(2, converted_mask, width, height) - converted_mask = proc.create_binary_mask(converted_mask, round=False) - - # Remove aliasing artifacts using a gaussian blur. - converted_mask = converted_mask.filter(ImageFilter.GaussianBlur(radius=4)) - - # Expand the mask to fit the whole image if needed. - if paste_to is not None: - converted_mask = proc.uncrop(converted_mask, - (width, height), - paste_to) - - for i, overlay_image in enumerate(overlay_images): - masks_for_overlay[i] = converted_mask - - image_masked = Image.new('RGBa', (overlay_image.width, overlay_image.height)) - image_masked.paste(overlay_image.convert("RGBA").convert("RGBa"), - mask=ImageOps.invert(converted_mask.convert('L'))) - - overlay_images[i] = image_masked.convert('RGBA') - - -# ------------------- Constants ------------------- - - -default = SoftInpaintingSettings(1, 0.5, 4) - -enabled_ui_label = "Soft inpainting" -enabled_gen_param_label = "Soft inpainting enabled" -enabled_el_id = "soft_inpainting_enabled" - -ui_labels = SoftInpaintingSettings( - "Schedule bias", - "Preservation strength", - "Transition contrast boost") - -ui_info = SoftInpaintingSettings( - "Shifts when preservation of original content occurs during denoising.", - "How strongly partially masked content should be preserved.", - "Amplifies the contrast that may be lost in partially masked regions.") - -gen_param_labels = SoftInpaintingSettings( - "Soft inpainting schedule bias", - "Soft inpainting preservation strength", - "Soft inpainting transition contrast boost") - -el_ids = SoftInpaintingSettings( - "mask_blend_power", - "mask_blend_scale", - "inpaint_detail_preservation") - - -# ------------------- UI ------------------- - - -def gradio_ui(): - import gradio as gr - from modules.ui_components import InputAccordion - - with InputAccordion(False, label=enabled_ui_label, elem_id=enabled_el_id) as soft_inpainting_enabled: - with gr.Group(): - gr.Markdown( - """ - Soft inpainting allows you to **seamlessly blend original content with inpainted content** according to the mask opacity. - **High _Mask blur_** values are recommended! - """) - - result = SoftInpaintingSettings( - gr.Slider(label=ui_labels.mask_blend_power, - info=ui_info.mask_blend_power, - minimum=0, - maximum=8, - step=0.1, - value=default.mask_blend_power, - elem_id=el_ids.mask_blend_power), - gr.Slider(label=ui_labels.mask_blend_scale, - info=ui_info.mask_blend_scale, - minimum=0, - maximum=8, - step=0.05, - value=default.mask_blend_scale, - elem_id=el_ids.mask_blend_scale), - gr.Slider(label=ui_labels.inpaint_detail_preservation, - info=ui_info.inpaint_detail_preservation, - minimum=1, - maximum=32, - step=0.5, - value=default.inpaint_detail_preservation, - elem_id=el_ids.inpaint_detail_preservation)) - - with gr.Accordion("Help", open=False): - gr.Markdown( - f""" - ### {ui_labels.mask_blend_power} - - The blending strength of original content is scaled proportionally with the decreasing noise level values at each step (sigmas). - This ensures that the influence of the denoiser and original content preservation is roughly balanced at each step. - This balance can be shifted using this parameter, controlling whether earlier or later steps have stronger preservation. - - - **Below 1**: Stronger preservation near the end (with low sigma) - - **1**: Balanced (proportional to sigma) - - **Above 1**: Stronger preservation in the beginning (with high sigma) - """) - gr.Markdown( - f""" - ### {ui_labels.mask_blend_scale} - - Skews whether partially masked image regions should be more likely to preserve the original content or favor inpainted content. - This may need to be adjusted depending on the {ui_labels.mask_blend_power}, CFG Scale, prompt and Denoising strength. - - - **Low values**: Favors generated content. - - **High values**: Favors original content. - """) - gr.Markdown( - f""" - ### {ui_labels.inpaint_detail_preservation} - - This parameter controls how the original latent vectors and denoised latent vectors are interpolated. - With higher values, the magnitude of the resulting blended vector will be closer to the maximum of the two interpolated vectors. - This can prevent the loss of contrast that occurs with linear interpolation. - - - **Low values**: Softer blending, details may fade. - - **High values**: Stronger contrast, may over-saturate colors. - """) - - return ( - [ - soft_inpainting_enabled, - result.mask_blend_power, - result.mask_blend_scale, - result.inpaint_detail_preservation - ], - [ - (soft_inpainting_enabled, enabled_gen_param_label), - (result.mask_blend_power, gen_param_labels.mask_blend_power), - (result.mask_blend_scale, gen_param_labels.mask_blend_scale), - (result.inpaint_detail_preservation, gen_param_labels.inpaint_detail_preservation) - ] - ) |