diff options
Diffstat (limited to 'modules/swinir_model.py')
-rw-r--r-- | modules/swinir_model.py | 157 |
1 files changed, 69 insertions, 88 deletions
diff --git a/modules/swinir_model.py b/modules/swinir_model.py index f515779e..ea7b6301 100644 --- a/modules/swinir_model.py +++ b/modules/swinir_model.py @@ -1,92 +1,91 @@ import contextlib import os -import sys -import traceback import numpy as np import torch from PIL import Image from basicsr.utils.download_util import load_file_from_url -import modules.images from modules import modelloader from modules.paths import models_path from modules.shared import cmd_opts, opts, device from modules.swinir_model_arch import SwinIR as net +from modules.upscaler import Upscaler, UpscalerData -model_dir = "SwinIR" -model_url = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR-L_x4_GAN.pth" -model_name = "SwinIR x4" -model_path = os.path.join(models_path, model_dir) -cmd_path = "" precision_scope = ( torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext ) -def load_model(path, scale=4): - global model_path - global model_name - if "http" in path: - dl_name = "%s%s" % (model_name.replace(" ", "_"), ".pth") - filename = load_file_from_url(url=path, model_dir=model_path, file_name=dl_name, progress=True) - else: - filename = path - if filename is None or not os.path.exists(filename): - return None - model = net( - upscale=scale, - in_chans=3, - img_size=64, - window_size=8, - img_range=1.0, - depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], - embed_dim=240, - num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8], - mlp_ratio=2, - upsampler="nearest+conv", - resi_connection="3conv", - ) - - pretrained_model = torch.load(filename) - model.load_state_dict(pretrained_model["params_ema"], strict=True) - if not cmd_opts.no_half: - model = model.half() - return model - - -def setup_model(dirname): - global model_path - global model_name - global cmd_path - if not os.path.exists(model_path): - os.makedirs(model_path) - cmd_path = dirname - model_file = "" - try: - models = modelloader.load_models(model_path, ext_filter=[".pt", ".pth"], command_path=cmd_path) - - if len(models) != 0: - model_file = models[0] - name = modelloader.friendly_name(model_file) - else: - # Add the "default" model if none are found. - model_file = model_url - name = model_name +class UpscalerSwinIR(Upscaler): + def __init__(self, dirname): + self.name = "SwinIR" + self.model_url = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0" \ + "/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR" \ + "-L_x4_GAN.pth " + self.model_name = "SwinIR 4x" + self.model_path = os.path.join(models_path, self.name) + self.user_path = dirname + super().__init__() + scalers = [] + model_files = self.find_models(ext_filter=[".pt", ".pth"]) + for model in model_files: + if "http" in model: + name = self.model_name + else: + name = modelloader.friendly_name(model) + model_data = UpscalerData(name, model, self) + scalers.append(model_data) + self.scalers = scalers + + def do_upscale(self, img, model_file): + model = self.load_model(model_file) + if model is None: + return img + model = model.to(device) + img = upscale(img, model) + try: + torch.cuda.empty_cache() + except: + pass + return img - modules.shared.sd_upscalers.append(UpscalerSwin(model_file, name)) - except Exception: - print(f"Error loading SwinIR model: {model_file}", file=sys.stderr) - print(traceback.format_exc(), file=sys.stderr) + def load_model(self, path, scale=4): + if "http" in path: + dl_name = "%s%s" % (self.name.replace(" ", "_"), ".pth") + filename = load_file_from_url(url=path, model_dir=self.model_path, file_name=dl_name, progress=True) + else: + filename = path + if filename is None or not os.path.exists(filename): + return None + model = net( + upscale=scale, + in_chans=3, + img_size=64, + window_size=8, + img_range=1.0, + depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], + embed_dim=240, + num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8], + mlp_ratio=2, + upsampler="nearest+conv", + resi_connection="3conv", + ) + + pretrained_model = torch.load(filename) + model.load_state_dict(pretrained_model["params_ema"], strict=True) + if not cmd_opts.no_half: + model = model.half() + return model def upscale( - img, - model, - tile=opts.SWIN_tile, - tile_overlap=opts.SWIN_tile_overlap, - window_size=8, - scale=4, + img, + model, + tile=opts.SWIN_tile, + tile_overlap=opts.SWIN_tile_overlap, + window_size=8, + scale=4, ): img = np.array(img) img = img[:, :, ::-1] @@ -125,34 +124,16 @@ def inference(img, model, tile, tile_overlap, window_size, scale): for h_idx in h_idx_list: for w_idx in w_idx_list: - in_patch = img[..., h_idx : h_idx + tile, w_idx : w_idx + tile] + in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile] out_patch = model(in_patch) out_patch_mask = torch.ones_like(out_patch) E[ - ..., h_idx * sf : (h_idx + tile) * sf, w_idx * sf : (w_idx + tile) * sf + ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf ].add_(out_patch) W[ - ..., h_idx * sf : (h_idx + tile) * sf, w_idx * sf : (w_idx + tile) * sf + ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf ].add_(out_patch_mask) output = E.div_(W) return output - - -class UpscalerSwin(modules.images.Upscaler): - def __init__(self, filename, title): - self.name = title - self.filename = filename - - def do_upscale(self, img): - model = load_model(self.filename) - if model is None: - return img - model = model.to(device) - img = upscale(img, model) - try: - torch.cuda.empty_cache() - except: - pass - return img
\ No newline at end of file |