diff options
Diffstat (limited to 'modules/textual_inversion/textual_inversion.py')
-rw-r--r-- | modules/textual_inversion/textual_inversion.py | 15 |
1 files changed, 12 insertions, 3 deletions
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index cd9f3498..e34dc2e8 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -6,6 +6,7 @@ import torch import tqdm
import html
import datetime
+import math
from modules import shared, devices, sd_hijack, processing, sd_models
@@ -156,7 +157,7 @@ def create_embedding(name, num_vectors_per_token, init_text='*'): return fn
-def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps, create_image_every, save_embedding_every, template_file):
+def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_size, steps, num_repeats, create_image_every, save_embedding_every, template_file):
assert embedding_name, 'embedding not selected'
shared.state.textinfo = "Initializing textual inversion training..."
@@ -182,7 +183,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps, shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
- ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, size=512, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file)
+ ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, size=training_size, repeats=num_repeats, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file)
hijack = sd_hijack.model_hijack
@@ -200,6 +201,9 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps, if ititial_step > steps:
return embedding, filename
+ tr_img_len = len([os.path.join(data_root, file_path) for file_path in os.listdir(data_root)])
+ epoch_len = (tr_img_len * num_repeats) + tr_img_len
+
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
for i, (x, text) in pbar:
embedding.step = i + ititial_step
@@ -223,7 +227,10 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps, loss.backward()
optimizer.step()
- pbar.set_description(f"loss: {losses.mean():.7f}")
+ epoch_num = math.floor(embedding.step / epoch_len)
+ epoch_step = embedding.step - (epoch_num * epoch_len)
+
+ pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{epoch_len}]loss: {losses.mean():.7f}")
if embedding.step > 0 and embedding_dir is not None and embedding.step % save_embedding_every == 0:
last_saved_file = os.path.join(embedding_dir, f'{embedding_name}-{embedding.step}.pt')
@@ -236,6 +243,8 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps, sd_model=shared.sd_model,
prompt=text,
steps=20,
+ height=training_size,
+ width=training_size,
do_not_save_grid=True,
do_not_save_samples=True,
)
|