aboutsummaryrefslogtreecommitdiffstats
path: root/modules/textual_inversion/textual_inversion.py
diff options
context:
space:
mode:
Diffstat (limited to 'modules/textual_inversion/textual_inversion.py')
-rw-r--r--modules/textual_inversion/textual_inversion.py61
1 files changed, 60 insertions, 1 deletions
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index 5965c5a0..7a24192e 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -7,10 +7,36 @@ import tqdm
import html
import datetime
+from PIL import Image,PngImagePlugin
+from ..images import captionImageOverlay
+import numpy as np
+import base64
+import json
from modules import shared, devices, sd_hijack, processing, sd_models
import modules.textual_inversion.dataset
+class EmbeddingEncoder(json.JSONEncoder):
+ def default(self, obj):
+ if isinstance(obj, torch.Tensor):
+ return {'TORCHTENSOR':obj.cpu().detach().numpy().tolist()}
+ return json.JSONEncoder.default(self, o)
+
+class EmbeddingDecoder(json.JSONDecoder):
+ def __init__(self, *args, **kwargs):
+ json.JSONDecoder.__init__(self, object_hook=self.object_hook, *args, **kwargs)
+ def object_hook(self, d):
+ if 'TORCHTENSOR' in d:
+ return torch.from_numpy(np.array(d['TORCHTENSOR']))
+ return d
+
+def embeddingToB64(data):
+ d = json.dumps(data,cls=EmbeddingEncoder)
+ return base64.b64encode(d.encode())
+
+def embeddingFromB64(data):
+ d = base64.b64decode(data)
+ return json.loads(d,cls=EmbeddingDecoder)
class Embedding:
def __init__(self, vec, name, step=None):
@@ -80,7 +106,15 @@ class EmbeddingDatabase:
def process_file(path, filename):
name = os.path.splitext(filename)[0]
- data = torch.load(path, map_location="cpu")
+ data = []
+
+ if filename.upper().endswith('.PNG'):
+ embed_image = Image.open(path)
+ if 'sd-ti-embedding' in embed_image.text:
+ data = embeddingFromB64(embed_image.text['sd-ti-embedding'])
+ name = data.get('name',name)
+ else:
+ data = torch.load(path, map_location="cpu")
# textual inversion embeddings
if 'string_to_param' in data:
@@ -178,6 +212,12 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
else:
images_dir = None
+ if create_image_every > 0 and save_image_with_stored_embedding:
+ images_embeds_dir = os.path.join(log_directory, "image_embeddings")
+ os.makedirs(images_embeds_dir, exist_ok=True)
+ else:
+ images_embeds_dir = None
+
cond_model = shared.sd_model.cond_stage_model
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
@@ -252,6 +292,25 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
image = processed.images[0]
shared.state.current_image = image
+
+ if save_image_with_stored_embedding and os.path.exists(last_saved_file):
+
+ last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{embedding.step}.png')
+
+ info = PngImagePlugin.PngInfo()
+ data = torch.load(last_saved_file)
+ info.add_text("sd-ti-embedding", embeddingToB64(data))
+
+ title = "<{}>".format(data.get('name','???'))
+ checkpoint = sd_models.select_checkpoint()
+ footer_left = checkpoint.model_name
+ footer_mid = '[{}]'.format(checkpoint.hash)
+ footer_right = '{}'.format(embedding.step)
+
+ captioned_image = captionImageOverlay(image,title,footer_left,footer_mid,footer_right)
+
+ captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info)
+
image.save(last_saved_image)
last_saved_image += f", prompt: {text}"