aboutsummaryrefslogtreecommitdiffstats
path: root/modules/textual_inversion
diff options
context:
space:
mode:
Diffstat (limited to 'modules/textual_inversion')
-rw-r--r--modules/textual_inversion/dataset.py2
-rw-r--r--modules/textual_inversion/textual_inversion.py6
2 files changed, 6 insertions, 2 deletions
diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py
index 1568b2b8..af9fbcf2 100644
--- a/modules/textual_inversion/dataset.py
+++ b/modules/textual_inversion/dataset.py
@@ -115,7 +115,7 @@ class PersonalizedBase(Dataset):
weight /= weight.mean()
elif use_weight:
#If an image does not have a alpha channel, add a ones weight map anyway so we can stack it later
- weight = torch.ones([channels] + latent_size)
+ weight = torch.ones(latent_sample.shape)
else:
weight = None
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index c63c7d1d..d2e62e58 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -152,7 +152,11 @@ class EmbeddingDatabase:
name = data.get('name', name)
else:
data = extract_image_data_embed(embed_image)
- name = data.get('name', name)
+ if data:
+ name = data.get('name', name)
+ else:
+ # if data is None, means this is not an embeding, just a preview image
+ return
elif ext in ['.BIN', '.PT']:
data = torch.load(path, map_location="cpu")
elif ext in ['.SAFETENSORS']: