aboutsummaryrefslogtreecommitdiffstats
path: root/modules/textual_inversion
diff options
context:
space:
mode:
Diffstat (limited to 'modules/textual_inversion')
-rw-r--r--modules/textual_inversion/autocrop.py12
-rw-r--r--modules/textual_inversion/dataset.py2
-rw-r--r--modules/textual_inversion/image_embedding.py2
-rw-r--r--modules/textual_inversion/preprocess.py10
-rw-r--r--modules/textual_inversion/textual_inversion.py15
5 files changed, 17 insertions, 24 deletions
diff --git a/modules/textual_inversion/autocrop.py b/modules/textual_inversion/autocrop.py
index 68e1103c..7770d22f 100644
--- a/modules/textual_inversion/autocrop.py
+++ b/modules/textual_inversion/autocrop.py
@@ -1,10 +1,8 @@
import cv2
import requests
import os
-from collections import defaultdict
-from math import log, sqrt
import numpy as np
-from PIL import Image, ImageDraw
+from PIL import ImageDraw
GREEN = "#0F0"
BLUE = "#00F"
@@ -111,7 +109,7 @@ def focal_point(im, settings):
if corner_centroid is not None:
color = BLUE
box = corner_centroid.bounding(max_size * corner_centroid.weight)
- d.text((box[0], box[1]-15), "Edge: %.02f" % corner_centroid.weight, fill=color)
+ d.text((box[0], box[1]-15), f"Edge: {corner_centroid.weight:.02f}", fill=color)
d.ellipse(box, outline=color)
if len(corner_points) > 1:
for f in corner_points:
@@ -119,7 +117,7 @@ def focal_point(im, settings):
if entropy_centroid is not None:
color = "#ff0"
box = entropy_centroid.bounding(max_size * entropy_centroid.weight)
- d.text((box[0], box[1]-15), "Entropy: %.02f" % entropy_centroid.weight, fill=color)
+ d.text((box[0], box[1]-15), f"Entropy: {entropy_centroid.weight:.02f}", fill=color)
d.ellipse(box, outline=color)
if len(entropy_points) > 1:
for f in entropy_points:
@@ -127,7 +125,7 @@ def focal_point(im, settings):
if face_centroid is not None:
color = RED
box = face_centroid.bounding(max_size * face_centroid.weight)
- d.text((box[0], box[1]-15), "Face: %.02f" % face_centroid.weight, fill=color)
+ d.text((box[0], box[1]-15), f"Face: {face_centroid.weight:.02f}", fill=color)
d.ellipse(box, outline=color)
if len(face_points) > 1:
for f in face_points:
@@ -185,7 +183,7 @@ def image_face_points(im, settings):
try:
faces = classifier.detectMultiScale(gray, scaleFactor=1.1,
minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE)
- except:
+ except Exception:
continue
if len(faces) > 0:
diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py
index af9fbcf2..41610e03 100644
--- a/modules/textual_inversion/dataset.py
+++ b/modules/textual_inversion/dataset.py
@@ -72,7 +72,7 @@ class PersonalizedBase(Dataset):
except Exception:
continue
- text_filename = os.path.splitext(path)[0] + ".txt"
+ text_filename = f"{os.path.splitext(path)[0]}.txt"
filename = os.path.basename(path)
if os.path.exists(text_filename):
diff --git a/modules/textual_inversion/image_embedding.py b/modules/textual_inversion/image_embedding.py
index 5593f88c..ee0e850a 100644
--- a/modules/textual_inversion/image_embedding.py
+++ b/modules/textual_inversion/image_embedding.py
@@ -2,7 +2,7 @@ import base64
import json
import numpy as np
import zlib
-from PIL import Image, PngImagePlugin, ImageDraw, ImageFont
+from PIL import Image, ImageDraw, ImageFont
from fonts.ttf import Roboto
import torch
from modules.shared import opts
diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py
index 4a29151d..d0cad09e 100644
--- a/modules/textual_inversion/preprocess.py
+++ b/modules/textual_inversion/preprocess.py
@@ -1,13 +1,9 @@
import os
from PIL import Image, ImageOps
import math
-import platform
-import sys
import tqdm
-import time
from modules import paths, shared, images, deepbooru
-from modules.shared import opts, cmd_opts
from modules.textual_inversion import autocrop
@@ -63,9 +59,9 @@ def save_pic_with_caption(image, index, params: PreprocessParams, existing_capti
image.save(os.path.join(params.dstdir, f"{basename}.png"))
if params.preprocess_txt_action == 'prepend' and existing_caption:
- caption = existing_caption + ' ' + caption
+ caption = f"{existing_caption} {caption}"
elif params.preprocess_txt_action == 'append' and existing_caption:
- caption = caption + ' ' + existing_caption
+ caption = f"{caption} {existing_caption}"
elif params.preprocess_txt_action == 'copy' and existing_caption:
caption = existing_caption
@@ -174,7 +170,7 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre
params.src = filename
existing_caption = None
- existing_caption_filename = os.path.splitext(filename)[0] + '.txt'
+ existing_caption_filename = f"{os.path.splitext(filename)[0]}.txt"
if os.path.exists(existing_caption_filename):
with open(existing_caption_filename, 'r', encoding="utf8") as file:
existing_caption = file.read()
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index 379df243..9ed9ba45 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -1,7 +1,6 @@
import os
import sys
import traceback
-import inspect
from collections import namedtuple
import torch
@@ -69,7 +68,7 @@ class Embedding:
'hash': self.checksum(),
'optimizer_state_dict': self.optimizer_state_dict,
}
- torch.save(optimizer_saved_dict, filename + '.optim')
+ torch.save(optimizer_saved_dict, f"{filename}.optim")
def checksum(self):
if self.cached_checksum is not None:
@@ -437,8 +436,8 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st
optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate, weight_decay=0.0)
if shared.opts.save_optimizer_state:
optimizer_state_dict = None
- if os.path.exists(filename + '.optim'):
- optimizer_saved_dict = torch.load(filename + '.optim', map_location='cpu')
+ if os.path.exists(f"{filename}.optim"):
+ optimizer_saved_dict = torch.load(f"{filename}.optim", map_location='cpu')
if embedding.checksum() == optimizer_saved_dict.get('hash', None):
optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None)
@@ -599,17 +598,17 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st
data = torch.load(last_saved_file)
info.add_text("sd-ti-embedding", embedding_to_b64(data))
- title = "<{}>".format(data.get('name', '???'))
+ title = f"<{data.get('name', '???')}>"
try:
vectorSize = list(data['string_to_param'].values())[0].shape[0]
- except Exception as e:
+ except Exception:
vectorSize = '?'
checkpoint = sd_models.select_checkpoint()
footer_left = checkpoint.model_name
- footer_mid = '[{}]'.format(checkpoint.shorthash)
- footer_right = '{}v {}s'.format(vectorSize, steps_done)
+ footer_mid = f'[{checkpoint.shorthash}]'
+ footer_right = f'{vectorSize}v {steps_done}s'
captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
captioned_image = insert_image_data_embed(captioned_image, data)