aboutsummaryrefslogtreecommitdiffstats
path: root/modules/textual_inversion
diff options
context:
space:
mode:
Diffstat (limited to 'modules/textual_inversion')
-rw-r--r--modules/textual_inversion/dataset.py52
-rw-r--r--modules/textual_inversion/image_embedding.py4
-rw-r--r--modules/textual_inversion/logging.py2
-rw-r--r--modules/textual_inversion/preprocess.py38
-rw-r--r--modules/textual_inversion/textual_inversion.py61
5 files changed, 135 insertions, 22 deletions
diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py
index fa48708e..d31963d4 100644
--- a/modules/textual_inversion/dataset.py
+++ b/modules/textual_inversion/dataset.py
@@ -3,8 +3,10 @@ import numpy as np
import PIL
import torch
from PIL import Image
-from torch.utils.data import Dataset, DataLoader
+from torch.utils.data import Dataset, DataLoader, Sampler
from torchvision import transforms
+from collections import defaultdict
+from random import shuffle, choices
import random
import tqdm
@@ -45,12 +47,12 @@ class PersonalizedBase(Dataset):
assert data_root, 'dataset directory not specified'
assert os.path.isdir(data_root), "Dataset directory doesn't exist"
assert os.listdir(data_root), "Dataset directory is empty"
- assert batch_size == 1 or not varsize, 'variable img size must have batch size 1'
self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root)]
self.shuffle_tags = shuffle_tags
self.tag_drop_out = tag_drop_out
+ groups = defaultdict(list)
print("Preparing dataset...")
for path in tqdm.tqdm(self.image_paths):
@@ -103,18 +105,25 @@ class PersonalizedBase(Dataset):
if include_cond and not (self.tag_drop_out != 0 or self.shuffle_tags):
with devices.autocast():
entry.cond = cond_model([entry.cond_text]).to(devices.cpu).squeeze(0)
-
+ groups[image.size].append(len(self.dataset))
self.dataset.append(entry)
del torchdata
del latent_dist
del latent_sample
self.length = len(self.dataset)
+ self.groups = list(groups.values())
assert self.length > 0, "No images have been found in the dataset."
self.batch_size = min(batch_size, self.length)
self.gradient_step = min(gradient_step, self.length // self.batch_size)
self.latent_sampling_method = latent_sampling_method
+ if len(groups) > 1:
+ print("Buckets:")
+ for (w, h), ids in sorted(groups.items(), key=lambda x: x[0]):
+ print(f" {w}x{h}: {len(ids)}")
+ print()
+
def create_text(self, filename_text):
text = random.choice(self.lines)
tags = filename_text.split(',')
@@ -137,9 +146,44 @@ class PersonalizedBase(Dataset):
entry.latent_sample = shared.sd_model.get_first_stage_encoding(entry.latent_dist).to(devices.cpu)
return entry
+
+class GroupedBatchSampler(Sampler):
+ def __init__(self, data_source: PersonalizedBase, batch_size: int):
+ super().__init__(data_source)
+
+ n = len(data_source)
+ self.groups = data_source.groups
+ self.len = n_batch = n // batch_size
+ expected = [len(g) / n * n_batch * batch_size for g in data_source.groups]
+ self.base = [int(e) // batch_size for e in expected]
+ self.n_rand_batches = nrb = n_batch - sum(self.base)
+ self.probs = [e%batch_size/nrb/batch_size if nrb>0 else 0 for e in expected]
+ self.batch_size = batch_size
+
+ def __len__(self):
+ return self.len
+
+ def __iter__(self):
+ b = self.batch_size
+
+ for g in self.groups:
+ shuffle(g)
+
+ batches = []
+ for g in self.groups:
+ batches.extend(g[i*b:(i+1)*b] for i in range(len(g) // b))
+ for _ in range(self.n_rand_batches):
+ rand_group = choices(self.groups, self.probs)[0]
+ batches.append(choices(rand_group, k=b))
+
+ shuffle(batches)
+
+ yield from batches
+
+
class PersonalizedDataLoader(DataLoader):
def __init__(self, dataset, latent_sampling_method="once", batch_size=1, pin_memory=False):
- super(PersonalizedDataLoader, self).__init__(dataset, shuffle=True, drop_last=True, batch_size=batch_size, pin_memory=pin_memory)
+ super(PersonalizedDataLoader, self).__init__(dataset, batch_sampler=GroupedBatchSampler(dataset, batch_size), pin_memory=pin_memory)
if latent_sampling_method == "random":
self.collate_fn = collate_wrapper_random
else:
diff --git a/modules/textual_inversion/image_embedding.py b/modules/textual_inversion/image_embedding.py
index ea653806..5593f88c 100644
--- a/modules/textual_inversion/image_embedding.py
+++ b/modules/textual_inversion/image_embedding.py
@@ -76,10 +76,10 @@ def insert_image_data_embed(image, data):
next_size = data_np_low.shape[0] + (h-(data_np_low.shape[0] % h))
next_size = next_size + ((h*d)-(next_size % (h*d)))
- data_np_low.resize(next_size)
+ data_np_low = np.resize(data_np_low, next_size)
data_np_low = data_np_low.reshape((h, -1, d))
- data_np_high.resize(next_size)
+ data_np_high = np.resize(data_np_high, next_size)
data_np_high = data_np_high.reshape((h, -1, d))
edge_style = list(data['string_to_param'].values())[0].cpu().detach().numpy().tolist()[0][:1024]
diff --git a/modules/textual_inversion/logging.py b/modules/textual_inversion/logging.py
index 8b1981d5..734a4b6f 100644
--- a/modules/textual_inversion/logging.py
+++ b/modules/textual_inversion/logging.py
@@ -2,7 +2,7 @@ import datetime
import json
import os
-saved_params_shared = {"model_name", "model_hash", "initial_step", "num_of_dataset_images", "learn_rate", "batch_size", "data_root", "log_directory", "training_width", "training_height", "steps", "create_image_every", "template_file"}
+saved_params_shared = {"model_name", "model_hash", "initial_step", "num_of_dataset_images", "learn_rate", "batch_size", "clip_grad_mode", "clip_grad_value", "gradient_step", "data_root", "log_directory", "training_width", "training_height", "steps", "create_image_every", "template_file", "gradient_step", "latent_sampling_method"}
saved_params_ti = {"embedding_name", "num_vectors_per_token", "save_embedding_every", "save_image_with_stored_embedding"}
saved_params_hypernet = {"hypernetwork_name", "layer_structure", "activation_func", "weight_init", "add_layer_norm", "use_dropout", "save_hypernetwork_every"}
saved_params_all = saved_params_shared | saved_params_ti | saved_params_hypernet
diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py
index 3c1042ad..c0ac11d3 100644
--- a/modules/textual_inversion/preprocess.py
+++ b/modules/textual_inversion/preprocess.py
@@ -12,7 +12,7 @@ from modules.shared import opts, cmd_opts
from modules.textual_inversion import autocrop
-def preprocess(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False):
+def preprocess(id_task, process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False, process_multicrop=None, process_multicrop_mindim=None, process_multicrop_maxdim=None, process_multicrop_minarea=None, process_multicrop_maxarea=None, process_multicrop_objective=None, process_multicrop_threshold=None):
try:
if process_caption:
shared.interrogator.load()
@@ -20,7 +20,7 @@ def preprocess(process_src, process_dst, process_width, process_height, preproce
if process_caption_deepbooru:
deepbooru.model.start()
- preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru, split_threshold, overlap_ratio, process_focal_crop, process_focal_crop_face_weight, process_focal_crop_entropy_weight, process_focal_crop_edges_weight, process_focal_crop_debug)
+ preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru, split_threshold, overlap_ratio, process_focal_crop, process_focal_crop_face_weight, process_focal_crop_entropy_weight, process_focal_crop_edges_weight, process_focal_crop_debug, process_multicrop, process_multicrop_mindim, process_multicrop_maxdim, process_multicrop_minarea, process_multicrop_maxarea, process_multicrop_objective, process_multicrop_threshold)
finally:
@@ -109,8 +109,30 @@ def split_pic(image, inverse_xy, width, height, overlap_ratio):
splitted = image.crop((0, y, to_w, y + to_h))
yield splitted
-
-def preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False):
+# not using torchvision.transforms.CenterCrop because it doesn't allow float regions
+def center_crop(image: Image, w: int, h: int):
+ iw, ih = image.size
+ if ih / h < iw / w:
+ sw = w * ih / h
+ box = (iw - sw) / 2, 0, iw - (iw - sw) / 2, ih
+ else:
+ sh = h * iw / w
+ box = 0, (ih - sh) / 2, iw, ih - (ih - sh) / 2
+ return image.resize((w, h), Image.Resampling.LANCZOS, box)
+
+
+def multicrop_pic(image: Image, mindim, maxdim, minarea, maxarea, objective, threshold):
+ iw, ih = image.size
+ err = lambda w, h: 1-(lambda x: x if x < 1 else 1/x)(iw/ih/(w/h))
+ wh = max(((w, h) for w in range(mindim, maxdim+1, 64) for h in range(mindim, maxdim+1, 64)
+ if minarea <= w * h <= maxarea and err(w, h) <= threshold),
+ key= lambda wh: (wh[0]*wh[1], -err(*wh))[::1 if objective=='Maximize area' else -1],
+ default=None
+ )
+ return wh and center_crop(image, *wh)
+
+
+def preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False, process_multicrop=None, process_multicrop_mindim=None, process_multicrop_maxdim=None, process_multicrop_minarea=None, process_multicrop_maxarea=None, process_multicrop_objective=None, process_multicrop_threshold=None):
width = process_width
height = process_height
src = os.path.abspath(process_src)
@@ -194,6 +216,14 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre
save_pic(focal, index, params, existing_caption=existing_caption)
process_default_resize = False
+ if process_multicrop:
+ cropped = multicrop_pic(img, process_multicrop_mindim, process_multicrop_maxdim, process_multicrop_minarea, process_multicrop_maxarea, process_multicrop_objective, process_multicrop_threshold)
+ if cropped is not None:
+ save_pic(cropped, index, params, existing_caption=existing_caption)
+ else:
+ print(f"skipped {img.width}x{img.height} image {filename} (can't find suitable size within error threshold)")
+ process_default_resize = False
+
if process_default_resize:
img = images.resize_image(1, img, width, height)
save_pic(img, index, params, existing_caption=existing_caption)
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index b915b091..5a7be422 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -11,9 +11,11 @@ import datetime
import csv
import safetensors.torch
+import numpy as np
from PIL import Image, PngImagePlugin
+from torch.utils.tensorboard import SummaryWriter
-from modules import shared, devices, sd_hijack, processing, sd_models, images, sd_samplers
+from modules import shared, devices, sd_hijack, processing, sd_models, images, sd_samplers, sd_hijack_checkpoint
import modules.textual_inversion.dataset
from modules.textual_inversion.learn_schedule import LearnRateScheduler
@@ -248,11 +250,14 @@ def create_embedding(name, num_vectors_per_token, overwrite_old, init_text='*'):
with devices.autocast():
cond_model([""]) # will send cond model to GPU if lowvram/medvram is active
- embedded = cond_model.encode_embedding_init_text(init_text, num_vectors_per_token)
+ #cond_model expects at least some text, so we provide '*' as backup.
+ embedded = cond_model.encode_embedding_init_text(init_text or '*', num_vectors_per_token)
vec = torch.zeros((num_vectors_per_token, embedded.shape[1]), device=devices.device)
- for i in range(num_vectors_per_token):
- vec[i] = embedded[i * int(embedded.shape[0]) // num_vectors_per_token]
+ #Only copy if we provided an init_text, otherwise keep vectors as zeros
+ if init_text:
+ for i in range(num_vectors_per_token):
+ vec[i] = embedded[i * int(embedded.shape[0]) // num_vectors_per_token]
# Remove illegal characters from name.
name = "".join( x for x in name if (x.isalnum() or x in "._- "))
@@ -291,6 +296,30 @@ def write_loss(log_directory, filename, step, epoch_len, values):
**values,
})
+def tensorboard_setup(log_directory):
+ os.makedirs(os.path.join(log_directory, "tensorboard"), exist_ok=True)
+ return SummaryWriter(
+ log_dir=os.path.join(log_directory, "tensorboard"),
+ flush_secs=shared.opts.training_tensorboard_flush_every)
+
+def tensorboard_add(tensorboard_writer, loss, global_step, step, learn_rate, epoch_num):
+ tensorboard_add_scaler(tensorboard_writer, "Loss/train", loss, global_step)
+ tensorboard_add_scaler(tensorboard_writer, f"Loss/train/epoch-{epoch_num}", loss, step)
+ tensorboard_add_scaler(tensorboard_writer, "Learn rate/train", learn_rate, global_step)
+ tensorboard_add_scaler(tensorboard_writer, f"Learn rate/train/epoch-{epoch_num}", learn_rate, step)
+
+def tensorboard_add_scaler(tensorboard_writer, tag, value, step):
+ tensorboard_writer.add_scalar(tag=tag,
+ scalar_value=value, global_step=step)
+
+def tensorboard_add_image(tensorboard_writer, tag, pil_image, step):
+ # Convert a pil image to a torch tensor
+ img_tensor = torch.as_tensor(np.array(pil_image, copy=True))
+ img_tensor = img_tensor.view(pil_image.size[1], pil_image.size[0],
+ len(pil_image.getbands()))
+ img_tensor = img_tensor.permute((2, 0, 1))
+
+ tensorboard_writer.add_image(tag, img_tensor, global_step=step)
def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_model_every, create_image_every, log_directory, name="embedding"):
assert model_name, f"{name} not selected"
@@ -316,7 +345,7 @@ def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, dat
assert log_directory, "Log directory is empty"
-def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_embedding_every, template_filename, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
+def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_embedding_every, template_filename, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
save_embedding_every = save_embedding_every or 0
create_image_every = create_image_every or 0
template_file = textual_inversion_templates.get(template_filename, None)
@@ -369,13 +398,16 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
# dataset loading may take a while, so input validations and early returns should be done before this
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
old_parallel_processing_allowed = shared.parallel_processing_allowed
+
+ if shared.opts.training_enable_tensorboard:
+ tensorboard_writer = tensorboard_setup(log_directory)
pin_memory = shared.opts.pin_memory
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize)
if shared.opts.save_training_settings_to_txt:
- save_settings_to_file(log_directory, {**dict(model_name=checkpoint.model_name, model_hash=checkpoint.hash, num_of_dataset_images=len(ds), num_vectors_per_token=len(embedding.vec)), **locals()})
+ save_settings_to_file(log_directory, {**dict(model_name=checkpoint.model_name, model_hash=checkpoint.shorthash, num_of_dataset_images=len(ds), num_vectors_per_token=len(embedding.vec)), **locals()})
latent_sampling_method = ds.latent_sampling_method
@@ -420,6 +452,8 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
pbar = tqdm.tqdm(total=steps - initial_step)
try:
+ sd_hijack_checkpoint.add()
+
for i in range((steps-initial_step) * gradient_step):
if scheduler.finished:
break
@@ -476,9 +510,8 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
epoch_num = embedding.step // steps_per_epoch
epoch_step = embedding.step % steps_per_epoch
- description = f"Training textual inversion [Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}]loss: {loss_step:.7f}"
+ description = f"Training textual inversion [Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}] loss: {loss_step:.7f}"
pbar.set_description(description)
- shared.state.textinfo = description
if embedding_dir is not None and steps_done % save_embedding_every == 0:
# Before saving, change name to match current checkpoint.
embedding_name_every = f'{embedding_name}-{steps_done}'
@@ -528,10 +561,14 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
shared.sd_model.first_stage_model.to(devices.cpu)
if image is not None:
- shared.state.current_image = image
+ shared.state.assign_current_image(image)
+
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
last_saved_image += f", prompt: {preview_text}"
+ if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images:
+ tensorboard_add_image(tensorboard_writer, f"Validation at epoch {epoch_num}", image, embedding.step)
+
if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded:
last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png')
@@ -549,7 +586,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
checkpoint = sd_models.select_checkpoint()
footer_left = checkpoint.model_name
- footer_mid = '[{}]'.format(checkpoint.hash)
+ footer_mid = '[{}]'.format(checkpoint.shorthash)
footer_right = '{}v {}s'.format(vectorSize, steps_done)
captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
@@ -582,16 +619,18 @@ Last saved image: {html.escape(last_saved_image)}<br/>
pbar.close()
shared.sd_model.first_stage_model.to(devices.device)
shared.parallel_processing_allowed = old_parallel_processing_allowed
+ sd_hijack_checkpoint.remove()
return embedding, filename
+
def save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, remove_cached_checksum=True):
old_embedding_name = embedding.name
old_sd_checkpoint = embedding.sd_checkpoint if hasattr(embedding, "sd_checkpoint") else None
old_sd_checkpoint_name = embedding.sd_checkpoint_name if hasattr(embedding, "sd_checkpoint_name") else None
old_cached_checksum = embedding.cached_checksum if hasattr(embedding, "cached_checksum") else None
try:
- embedding.sd_checkpoint = checkpoint.hash
+ embedding.sd_checkpoint = checkpoint.shorthash
embedding.sd_checkpoint_name = checkpoint.model_name
if remove_cached_checksum:
embedding.cached_checksum = None