aboutsummaryrefslogtreecommitdiffstats
path: root/modules/ui.py
diff options
context:
space:
mode:
Diffstat (limited to 'modules/ui.py')
-rw-r--r--modules/ui.py155
1 files changed, 24 insertions, 131 deletions
diff --git a/modules/ui.py b/modules/ui.py
index 08e0ad77..6451e14c 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -21,14 +21,14 @@ from modules.ui_gradio_extensions import reload_javascript
from modules.shared import opts, cmd_opts
-import modules.generation_parameters_copypaste as parameters_copypaste
+import modules.infotext as parameters_copypaste
import modules.hypernetworks.ui as hypernetworks_ui
import modules.textual_inversion.ui as textual_inversion_ui
import modules.textual_inversion.textual_inversion as textual_inversion
import modules.shared as shared
from modules import prompt_parser
from modules.sd_hijack import model_hijack
-from modules.generation_parameters_copypaste import image_from_url_text
+from modules.infotext import image_from_url_text, PasteField
create_setting_component = ui_settings.create_setting_component
@@ -436,28 +436,28 @@ def create_ui():
)
txt2img_paste_fields = [
- (toprow.prompt, "Prompt"),
- (toprow.negative_prompt, "Negative prompt"),
- (steps, "Steps"),
- (sampler_name, "Sampler"),
- (cfg_scale, "CFG scale"),
- (width, "Size-1"),
- (height, "Size-2"),
- (batch_size, "Batch size"),
- (toprow.ui_styles.dropdown, lambda d: d["Styles array"] if isinstance(d.get("Styles array"), list) else gr.update()),
- (denoising_strength, "Denoising strength"),
- (enable_hr, lambda d: "Denoising strength" in d and ("Hires upscale" in d or "Hires upscaler" in d or "Hires resize-1" in d)),
- (hr_scale, "Hires upscale"),
- (hr_upscaler, "Hires upscaler"),
- (hr_second_pass_steps, "Hires steps"),
- (hr_resize_x, "Hires resize-1"),
- (hr_resize_y, "Hires resize-2"),
- (hr_checkpoint_name, "Hires checkpoint"),
- (hr_sampler_name, "Hires sampler"),
- (hr_sampler_container, lambda d: gr.update(visible=True) if d.get("Hires sampler", "Use same sampler") != "Use same sampler" or d.get("Hires checkpoint", "Use same checkpoint") != "Use same checkpoint" else gr.update()),
- (hr_prompt, "Hires prompt"),
- (hr_negative_prompt, "Hires negative prompt"),
- (hr_prompts_container, lambda d: gr.update(visible=True) if d.get("Hires prompt", "") != "" or d.get("Hires negative prompt", "") != "" else gr.update()),
+ PasteField(toprow.prompt, "Prompt", api="prompt"),
+ PasteField(toprow.negative_prompt, "Negative prompt", api="negative_prompt"),
+ PasteField(steps, "Steps", api="steps"),
+ PasteField(sampler_name, "Sampler", api="sampler_name"),
+ PasteField(cfg_scale, "CFG scale", api="cfg_scale"),
+ PasteField(width, "Size-1", api="width"),
+ PasteField(height, "Size-2", api="height"),
+ PasteField(batch_size, "Batch size", api="batch_size"),
+ PasteField(toprow.ui_styles.dropdown, lambda d: d["Styles array"] if isinstance(d.get("Styles array"), list) else gr.update(), api="styles"),
+ PasteField(denoising_strength, "Denoising strength", api="denoising_strength"),
+ PasteField(enable_hr, lambda d: "Denoising strength" in d and ("Hires upscale" in d or "Hires upscaler" in d or "Hires resize-1" in d), api="enable_hr"),
+ PasteField(hr_scale, "Hires upscale", api="hr_scale"),
+ PasteField(hr_upscaler, "Hires upscaler", api="hr_upscaler"),
+ PasteField(hr_second_pass_steps, "Hires steps", api="hr_second_pass_steps"),
+ PasteField(hr_resize_x, "Hires resize-1", api="hr_resize_x"),
+ PasteField(hr_resize_y, "Hires resize-2", api="hr_resize_y"),
+ PasteField(hr_checkpoint_name, "Hires checkpoint", api="hr_checkpoint_name"),
+ PasteField(hr_sampler_name, "Hires sampler", api="hr_sampler_name"),
+ PasteField(hr_sampler_container, lambda d: gr.update(visible=True) if d.get("Hires sampler", "Use same sampler") != "Use same sampler" or d.get("Hires checkpoint", "Use same checkpoint") != "Use same checkpoint" else gr.update()),
+ PasteField(hr_prompt, "Hires prompt", api="hr_prompt"),
+ PasteField(hr_negative_prompt, "Hires negative prompt", api="hr_negative_prompt"),
+ PasteField(hr_prompts_container, lambda d: gr.update(visible=True) if d.get("Hires prompt", "") != "" or d.get("Hires negative prompt", "") != "" else gr.update()),
*scripts.scripts_txt2img.infotext_fields
]
parameters_copypaste.add_paste_fields("txt2img", None, txt2img_paste_fields, override_settings)
@@ -912,71 +912,6 @@ def create_ui():
with gr.Column():
create_hypernetwork = gr.Button(value="Create hypernetwork", variant='primary', elem_id="train_create_hypernetwork")
- with gr.Tab(label="Preprocess images", id="preprocess_images"):
- process_src = gr.Textbox(label='Source directory', elem_id="train_process_src")
- process_dst = gr.Textbox(label='Destination directory', elem_id="train_process_dst")
- process_width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="train_process_width")
- process_height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="train_process_height")
- preprocess_txt_action = gr.Dropdown(label='Existing Caption txt Action', value="ignore", choices=["ignore", "copy", "prepend", "append"], elem_id="train_preprocess_txt_action")
-
- with gr.Row():
- process_keep_original_size = gr.Checkbox(label='Keep original size', elem_id="train_process_keep_original_size")
- process_flip = gr.Checkbox(label='Create flipped copies', elem_id="train_process_flip")
- process_split = gr.Checkbox(label='Split oversized images', elem_id="train_process_split")
- process_focal_crop = gr.Checkbox(label='Auto focal point crop', elem_id="train_process_focal_crop")
- process_multicrop = gr.Checkbox(label='Auto-sized crop', elem_id="train_process_multicrop")
- process_caption = gr.Checkbox(label='Use BLIP for caption', elem_id="train_process_caption")
- process_caption_deepbooru = gr.Checkbox(label='Use deepbooru for caption', visible=True, elem_id="train_process_caption_deepbooru")
-
- with gr.Row(visible=False) as process_split_extra_row:
- process_split_threshold = gr.Slider(label='Split image threshold', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_split_threshold")
- process_overlap_ratio = gr.Slider(label='Split image overlap ratio', value=0.2, minimum=0.0, maximum=0.9, step=0.05, elem_id="train_process_overlap_ratio")
-
- with gr.Row(visible=False) as process_focal_crop_row:
- process_focal_crop_face_weight = gr.Slider(label='Focal point face weight', value=0.9, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_focal_crop_face_weight")
- process_focal_crop_entropy_weight = gr.Slider(label='Focal point entropy weight', value=0.15, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_focal_crop_entropy_weight")
- process_focal_crop_edges_weight = gr.Slider(label='Focal point edges weight', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_focal_crop_edges_weight")
- process_focal_crop_debug = gr.Checkbox(label='Create debug image', elem_id="train_process_focal_crop_debug")
-
- with gr.Column(visible=False) as process_multicrop_col:
- gr.Markdown('Each image is center-cropped with an automatically chosen width and height.')
- with gr.Row():
- process_multicrop_mindim = gr.Slider(minimum=64, maximum=2048, step=8, label="Dimension lower bound", value=384, elem_id="train_process_multicrop_mindim")
- process_multicrop_maxdim = gr.Slider(minimum=64, maximum=2048, step=8, label="Dimension upper bound", value=768, elem_id="train_process_multicrop_maxdim")
- with gr.Row():
- process_multicrop_minarea = gr.Slider(minimum=64*64, maximum=2048*2048, step=1, label="Area lower bound", value=64*64, elem_id="train_process_multicrop_minarea")
- process_multicrop_maxarea = gr.Slider(minimum=64*64, maximum=2048*2048, step=1, label="Area upper bound", value=640*640, elem_id="train_process_multicrop_maxarea")
- with gr.Row():
- process_multicrop_objective = gr.Radio(["Maximize area", "Minimize error"], value="Maximize area", label="Resizing objective", elem_id="train_process_multicrop_objective")
- process_multicrop_threshold = gr.Slider(minimum=0, maximum=1, step=0.01, label="Error threshold", value=0.1, elem_id="train_process_multicrop_threshold")
-
- with gr.Row():
- with gr.Column(scale=3):
- gr.HTML(value="")
-
- with gr.Column():
- with gr.Row():
- interrupt_preprocessing = gr.Button("Interrupt", elem_id="train_interrupt_preprocessing")
- run_preprocess = gr.Button(value="Preprocess", variant='primary', elem_id="train_run_preprocess")
-
- process_split.change(
- fn=lambda show: gr_show(show),
- inputs=[process_split],
- outputs=[process_split_extra_row],
- )
-
- process_focal_crop.change(
- fn=lambda show: gr_show(show),
- inputs=[process_focal_crop],
- outputs=[process_focal_crop_row],
- )
-
- process_multicrop.change(
- fn=lambda show: gr_show(show),
- inputs=[process_multicrop],
- outputs=[process_multicrop_col],
- )
-
def get_textual_inversion_template_names():
return sorted(textual_inversion.textual_inversion_templates)
@@ -1077,42 +1012,6 @@ def create_ui():
]
)
- run_preprocess.click(
- fn=wrap_gradio_gpu_call(textual_inversion_ui.preprocess, extra_outputs=[gr.update()]),
- _js="start_training_textual_inversion",
- inputs=[
- dummy_component,
- process_src,
- process_dst,
- process_width,
- process_height,
- preprocess_txt_action,
- process_keep_original_size,
- process_flip,
- process_split,
- process_caption,
- process_caption_deepbooru,
- process_split_threshold,
- process_overlap_ratio,
- process_focal_crop,
- process_focal_crop_face_weight,
- process_focal_crop_entropy_weight,
- process_focal_crop_edges_weight,
- process_focal_crop_debug,
- process_multicrop,
- process_multicrop_mindim,
- process_multicrop_maxdim,
- process_multicrop_minarea,
- process_multicrop_maxarea,
- process_multicrop_objective,
- process_multicrop_threshold,
- ],
- outputs=[
- ti_output,
- ti_outcome,
- ],
- )
-
train_embedding.click(
fn=wrap_gradio_gpu_call(textual_inversion_ui.train_embedding, extra_outputs=[gr.update()]),
_js="start_training_textual_inversion",
@@ -1186,12 +1085,6 @@ def create_ui():
outputs=[],
)
- interrupt_preprocessing.click(
- fn=lambda: shared.state.interrupt(),
- inputs=[],
- outputs=[],
- )
-
loadsave = ui_loadsave.UiLoadsave(cmd_opts.ui_config_file)
settings = ui_settings.UiSettings()