diff options
Diffstat (limited to 'modules')
-rw-r--r-- | modules/sd_models_xl.py | 2 | ||||
-rw-r--r-- | modules/sd_vae_approx.py | 37 | ||||
-rw-r--r-- | modules/sd_vae_taesd.py | 26 |
3 files changed, 40 insertions, 25 deletions
diff --git a/modules/sd_models_xl.py b/modules/sd_models_xl.py index b19036f1..af445a61 100644 --- a/modules/sd_models_xl.py +++ b/modules/sd_models_xl.py @@ -48,7 +48,7 @@ def extend_sdxl(model): discretization = sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization()
model.alphas_cumprod = torch.asarray(discretization.alphas_cumprod, device=devices.device, dtype=dtype)
- model.is_xl = True
+ model.is_sdxl = True
sgm.models.diffusion.DiffusionEngine.get_learned_conditioning = get_learned_conditioning
diff --git a/modules/sd_vae_approx.py b/modules/sd_vae_approx.py index e2f00468..b348f3ae 100644 --- a/modules/sd_vae_approx.py +++ b/modules/sd_vae_approx.py @@ -2,9 +2,9 @@ import os import torch
from torch import nn
-from modules import devices, paths
+from modules import devices, paths, shared
-sd_vae_approx_model = None
+sd_vae_approx_models = {}
class VAEApprox(nn.Module):
@@ -31,19 +31,34 @@ class VAEApprox(nn.Module): return x
+def download_model(model_path, model_url):
+ if not os.path.exists(model_path):
+ os.makedirs(os.path.dirname(model_path), exist_ok=True)
+
+ print(f'Downloading VAEApprox model to: {model_path}')
+ torch.hub.download_url_to_file(model_url, model_path)
+
+
def model():
- global sd_vae_approx_model
+ model_name = "vaeapprox-sdxl.pt" if getattr(shared.sd_model, 'is_sdxl', False) else "model.pt"
+ loaded_model = sd_vae_approx_models.get(model_name)
- if sd_vae_approx_model is None:
- model_path = os.path.join(paths.models_path, "VAE-approx", "model.pt")
- sd_vae_approx_model = VAEApprox()
+ if loaded_model is None:
+ model_path = os.path.join(paths.models_path, "VAE-approx", model_name)
if not os.path.exists(model_path):
- model_path = os.path.join(paths.script_path, "models", "VAE-approx", "model.pt")
- sd_vae_approx_model.load_state_dict(torch.load(model_path, map_location='cpu' if devices.device.type != 'cuda' else None))
- sd_vae_approx_model.eval()
- sd_vae_approx_model.to(devices.device, devices.dtype)
+ model_path = os.path.join(paths.script_path, "models", "VAE-approx", model_name)
+
+ if not os.path.exists(model_path):
+ model_path = os.path.join(paths.models_path, "VAE-approx", model_name)
+ download_model(model_path, 'https://github.com/AUTOMATIC1111/stable-diffusion-webui/releases/download/v1.0.0-pre/' + model_name)
+
+ loaded_model = VAEApprox()
+ loaded_model.load_state_dict(torch.load(model_path, map_location='cpu' if devices.device.type != 'cuda' else None))
+ loaded_model.eval()
+ loaded_model.to(devices.device, devices.dtype)
+ sd_vae_approx_models[model_name] = loaded_model
- return sd_vae_approx_model
+ return loaded_model
def cheap_approximation(sample):
diff --git a/modules/sd_vae_taesd.py b/modules/sd_vae_taesd.py index 5e8496e8..5bf7c76e 100644 --- a/modules/sd_vae_taesd.py +++ b/modules/sd_vae_taesd.py @@ -8,9 +8,9 @@ import os import torch import torch.nn as nn -from modules import devices, paths_internal +from modules import devices, paths_internal, shared -sd_vae_taesd = None +sd_vae_taesd_models = {} def conv(n_in, n_out, **kwargs): @@ -61,9 +61,7 @@ class TAESD(nn.Module): return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude) -def download_model(model_path): - model_url = 'https://github.com/madebyollin/taesd/raw/main/taesd_decoder.pth' - +def download_model(model_path, model_url): if not os.path.exists(model_path): os.makedirs(os.path.dirname(model_path), exist_ok=True) @@ -72,17 +70,19 @@ def download_model(model_path): def model(): - global sd_vae_taesd + model_name = "taesdxl_decoder.pth" if getattr(shared.sd_model, 'is_sdxl', False) else "taesd_decoder.pth" + loaded_model = sd_vae_taesd_models.get(model_name) - if sd_vae_taesd is None: - model_path = os.path.join(paths_internal.models_path, "VAE-taesd", "taesd_decoder.pth") - download_model(model_path) + if loaded_model is None: + model_path = os.path.join(paths_internal.models_path, "VAE-taesd", model_name) + download_model(model_path, 'https://github.com/madebyollin/taesd/raw/main/' + model_name) if os.path.exists(model_path): - sd_vae_taesd = TAESD(model_path) - sd_vae_taesd.eval() - sd_vae_taesd.to(devices.device, devices.dtype) + loaded_model = TAESD(model_path) + loaded_model.eval() + loaded_model.to(devices.device, devices.dtype) + sd_vae_taesd_models[model_name] = loaded_model else: raise FileNotFoundError('TAESD model not found') - return sd_vae_taesd.decoder + return loaded_model.decoder |