diff options
Diffstat (limited to 'modules')
-rw-r--r-- | modules/api/api.py | 29 | ||||
-rw-r--r-- | modules/errors.py | 25 | ||||
-rw-r--r-- | modules/extras.py | 31 | ||||
-rw-r--r-- | modules/generation_parameters_copypaste.py | 5 | ||||
-rw-r--r-- | modules/hypernetworks/hypernetwork.py | 1 | ||||
-rw-r--r-- | modules/interrogate.py | 4 | ||||
-rw-r--r-- | modules/processing.py | 4 | ||||
-rw-r--r-- | modules/sd_hijack_inpainting.py | 5 | ||||
-rw-r--r-- | modules/sd_models.py | 57 | ||||
-rw-r--r-- | modules/shared.py | 19 | ||||
-rw-r--r-- | modules/textual_inversion/preprocess.py | 1 | ||||
-rw-r--r-- | modules/textual_inversion/textual_inversion.py | 41 | ||||
-rw-r--r-- | modules/ui.py | 1 |
13 files changed, 173 insertions, 50 deletions
diff --git a/modules/api/api.py b/modules/api/api.py index 9c670f00..a6c1d6ed 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -1,11 +1,12 @@ import base64 import io import time +import datetime import uvicorn from threading import Lock from io import BytesIO from gradio.processing_utils import decode_base64_to_file -from fastapi import APIRouter, Depends, FastAPI, HTTPException +from fastapi import APIRouter, Depends, FastAPI, HTTPException, Request, Response from fastapi.security import HTTPBasic, HTTPBasicCredentials from secrets import compare_digest @@ -18,7 +19,7 @@ from modules.textual_inversion.textual_inversion import create_embedding, train_ from modules.textual_inversion.preprocess import preprocess from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork from PIL import PngImagePlugin,Image -from modules.sd_models import checkpoints_list +from modules.sd_models import checkpoints_list, find_checkpoint_config from modules.realesrgan_model import get_realesrgan_models from modules import devices from typing import List @@ -67,6 +68,27 @@ def encode_pil_to_base64(image): bytes_data = output_bytes.getvalue() return base64.b64encode(bytes_data) +def api_middleware(app: FastAPI): + @app.middleware("http") + async def log_and_time(req: Request, call_next): + ts = time.time() + res: Response = await call_next(req) + duration = str(round(time.time() - ts, 4)) + res.headers["X-Process-Time"] = duration + endpoint = req.scope.get('path', 'err') + if shared.cmd_opts.api_log and endpoint.startswith('/sdapi'): + print('API {t} {code} {prot}/{ver} {method} {endpoint} {cli} {duration}'.format( + t = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"), + code = res.status_code, + ver = req.scope.get('http_version', '0.0'), + cli = req.scope.get('client', ('0:0.0.0', 0))[0], + prot = req.scope.get('scheme', 'err'), + method = req.scope.get('method', 'err'), + endpoint = endpoint, + duration = duration, + )) + return res + class Api: def __init__(self, app: FastAPI, queue_lock: Lock): @@ -78,6 +100,7 @@ class Api: self.router = APIRouter() self.app = app + init_api_middleware(self.app) self.queue_lock = queue_lock self.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse) self.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse) @@ -303,7 +326,7 @@ class Api: return upscalers def get_sd_models(self): - return [{"title":x.title, "model_name":x.model_name, "hash":x.hash, "filename": x.filename, "config": x.config} for x in checkpoints_list.values()] + return [{"title":x.title, "model_name":x.model_name, "hash":x.hash, "filename": x.filename, "config": find_checkpoint_config(x)} for x in checkpoints_list.values()] def get_hypernetworks(self): return [{"name": name, "path": shared.hypernetworks[name]} for name in shared.hypernetworks] diff --git a/modules/errors.py b/modules/errors.py index 372dc51a..a668c014 100644 --- a/modules/errors.py +++ b/modules/errors.py @@ -2,9 +2,30 @@ import sys import traceback
+def print_error_explanation(message):
+ lines = message.strip().split("\n")
+ max_len = max([len(x) for x in lines])
+
+ print('=' * max_len, file=sys.stderr)
+ for line in lines:
+ print(line, file=sys.stderr)
+ print('=' * max_len, file=sys.stderr)
+
+
+def display(e: Exception, task):
+ print(f"{task or 'error'}: {type(e).__name__}", file=sys.stderr)
+ print(traceback.format_exc(), file=sys.stderr)
+
+ message = str(e)
+ if "copying a param with shape torch.Size([640, 1024]) from checkpoint, the shape in current model is torch.Size([640, 768])" in message:
+ print_error_explanation("""
+The most likely cause of this is you are trying to load Stable Diffusion 2.0 model without specifying its connfig file.
+See https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20 for how to solve this.
+ """)
+
+
def run(code, task):
try:
code()
except Exception as e:
- print(f"{task}: {type(e).__name__}", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ display(task, e)
diff --git a/modules/extras.py b/modules/extras.py index 5e270250..d665440a 100644 --- a/modules/extras.py +++ b/modules/extras.py @@ -58,6 +58,9 @@ cached_images: LruCache = LruCache(max_size=5) def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool, save_output: bool = True):
devices.torch_gc()
+ shared.state.begin()
+ shared.state.job = 'extras'
+
imageArr = []
# Also keep track of original file names
imageNameArr = []
@@ -94,6 +97,7 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_ # Extra operation definitions
def run_gfpgan(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
+ shared.state.job = 'extras-gfpgan'
restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8))
res = Image.fromarray(restored_img)
@@ -104,6 +108,7 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_ return (res, info)
def run_codeformer(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
+ shared.state.job = 'extras-codeformer'
restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight)
res = Image.fromarray(restored_img)
@@ -114,6 +119,7 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_ return (res, info)
def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop):
+ shared.state.job = 'extras-upscale'
upscaler = shared.sd_upscalers[scaler_index]
res = upscaler.scaler.upscale(image, resize, upscaler.data_path)
if mode == 1 and crop:
@@ -180,6 +186,9 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_ for image, image_name in zip(imageArr, imageNameArr):
if image is None:
return outputs, "Please select an input image.", ''
+
+ shared.state.textinfo = f'Processing image {image_name}'
+
existing_pnginfo = image.info or {}
image = image.convert("RGB")
@@ -193,6 +202,10 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_ else:
basename = ''
+ if opts.enable_pnginfo: # append info before save
+ image.info = existing_pnginfo
+ image.info["extras"] = info
+
if save_output:
# Add upscaler name as a suffix.
suffix = f"-{shared.sd_upscalers[extras_upscaler_1].name}" if shared.opts.use_upscaler_name_as_suffix else ""
@@ -203,10 +216,6 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_ images.save_image(image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None, suffix=suffix)
- if opts.enable_pnginfo:
- image.info = existing_pnginfo
- image.info["extras"] = info
-
if extras_mode != 2 or show_extras_results :
outputs.append(image)
@@ -242,6 +251,9 @@ def run_pnginfo(image): def run_modelmerger(primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format):
+ shared.state.begin()
+ shared.state.job = 'model-merge'
+
def weighted_sum(theta0, theta1, alpha):
return ((1 - alpha) * theta0) + (alpha * theta1)
@@ -263,8 +275,11 @@ def run_modelmerger(primary_model_name, secondary_model_name, tertiary_model_nam theta_func1, theta_func2 = theta_funcs[interp_method]
if theta_func1 and not tertiary_model_info:
+ shared.state.textinfo = "Failed: Interpolation method requires a tertiary model."
+ shared.state.end()
return ["Failed: Interpolation method requires a tertiary model."] + [gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)]
+ shared.state.textinfo = f"Loading {secondary_model_info.filename}..."
print(f"Loading {secondary_model_info.filename}...")
theta_1 = sd_models.read_state_dict(secondary_model_info.filename, map_location='cpu')
@@ -281,6 +296,7 @@ def run_modelmerger(primary_model_name, secondary_model_name, tertiary_model_nam theta_1[key] = torch.zeros_like(theta_1[key])
del theta_2
+ shared.state.textinfo = f"Loading {primary_model_info.filename}..."
print(f"Loading {primary_model_info.filename}...")
theta_0 = sd_models.read_state_dict(primary_model_info.filename, map_location='cpu')
@@ -291,6 +307,7 @@ def run_modelmerger(primary_model_name, secondary_model_name, tertiary_model_nam a = theta_0[key]
b = theta_1[key]
+ shared.state.textinfo = f'Merging layer {key}'
# this enables merging an inpainting model (A) with another one (B);
# where normal model would have 4 channels, for latenst space, inpainting model would
# have another 4 channels for unmasked picture's latent space, plus one channel for mask, for a total of 9
@@ -303,8 +320,6 @@ def run_modelmerger(primary_model_name, secondary_model_name, tertiary_model_nam theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier)
result_is_inpainting_model = True
else:
- assert a.shape == b.shape, f'Incompatible shapes for layer {key}: A is {a.shape}, and B is {b.shape}'
-
theta_0[key] = theta_func2(a, b, multiplier)
if save_as_half:
@@ -332,6 +347,7 @@ def run_modelmerger(primary_model_name, secondary_model_name, tertiary_model_nam output_modelname = os.path.join(ckpt_dir, filename)
+ shared.state.textinfo = f"Saving to {output_modelname}..."
print(f"Saving to {output_modelname}...")
_, extension = os.path.splitext(output_modelname)
@@ -343,4 +359,7 @@ def run_modelmerger(primary_model_name, secondary_model_name, tertiary_model_nam sd_models.list_models()
print("Checkpoint saved.")
+ shared.state.textinfo = "Checkpoint saved to " + output_modelname
+ shared.state.end()
+
return ["Checkpoint saved to " + output_modelname] + [gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)]
diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index d94f11a3..4baf4d9a 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -37,7 +37,10 @@ def quote(text): def image_from_url_text(filedata):
- if type(filedata) == dict and filedata["is_file"]:
+ if type(filedata) == list and len(filedata) > 0 and type(filedata[0]) == dict and filedata[0].get("is_file", False):
+ filedata = filedata[0]
+
+ if type(filedata) == dict and filedata.get("is_file", False):
filename = filedata["name"]
is_in_right_dir = ui_tempdir.check_tmp_file(shared.demo, filename)
assert is_in_right_dir, 'trying to open image file outside of allowed directories'
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 109e8078..450fecac 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -417,6 +417,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step, shared.loaded_hypernetwork = Hypernetwork()
shared.loaded_hypernetwork.load(path)
+ shared.state.job = "train-hypernetwork"
shared.state.textinfo = "Initializing hypernetwork training..."
shared.state.job_count = steps
diff --git a/modules/interrogate.py b/modules/interrogate.py index 6f761c5a..738d8ff7 100644 --- a/modules/interrogate.py +++ b/modules/interrogate.py @@ -136,7 +136,8 @@ class InterrogateModels: def interrogate(self, pil_image):
res = ""
-
+ shared.state.begin()
+ shared.state.job = 'interrogate'
try:
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
@@ -177,5 +178,6 @@ class InterrogateModels: res += "<error>"
self.unload()
+ shared.state.end()
return res
diff --git a/modules/processing.py b/modules/processing.py index a172af0b..fd7c7015 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -705,7 +705,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): return
if not isinstance(image, Image.Image):
- image = sd_samplers.sample_to_image(image, index)
+ image = sd_samplers.sample_to_image(image, index, approximation=0)
images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, suffix="-before-highres-fix")
@@ -713,7 +713,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): for i in range(samples.shape[0]):
save_intermediate(samples, i)
- samples = torch.nn.functional.interpolate(samples, size=(target_height // opt_f, target_width // opt_f), mode=latent_scale_mode)
+ samples = torch.nn.functional.interpolate(samples, size=(target_height // opt_f, target_width // opt_f), mode=latent_scale_mode["mode"], antialias=latent_scale_mode["antialias"])
# Avoid making the inpainting conditioning unless necessary as
# this does need some extra compute to decode / encode the image again.
diff --git a/modules/sd_hijack_inpainting.py b/modules/sd_hijack_inpainting.py index 3c214a35..31d2c898 100644 --- a/modules/sd_hijack_inpainting.py +++ b/modules/sd_hijack_inpainting.py @@ -97,8 +97,11 @@ def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=F def should_hijack_inpainting(checkpoint_info): + from modules import sd_models + ckpt_basename = os.path.basename(checkpoint_info.filename).lower() - cfg_basename = os.path.basename(checkpoint_info.config).lower() + cfg_basename = os.path.basename(sd_models.find_checkpoint_config(checkpoint_info)).lower() + return "inpainting" in ckpt_basename and not "inpainting" in cfg_basename diff --git a/modules/sd_models.py b/modules/sd_models.py index b98b05fc..6dca4ddf 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -20,7 +20,7 @@ from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inp model_dir = "Stable-diffusion"
model_path = os.path.abspath(os.path.join(models_path, model_dir))
-CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name', 'config'])
+CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name'])
checkpoints_list = {}
checkpoints_loaded = collections.OrderedDict()
@@ -48,6 +48,14 @@ def checkpoint_tiles(): return sorted([x.title for x in checkpoints_list.values()], key = alphanumeric_key)
+def find_checkpoint_config(info):
+ config = os.path.splitext(info.filename)[0] + ".yaml"
+ if os.path.exists(config):
+ return config
+
+ return shared.cmd_opts.config
+
+
def list_models():
checkpoints_list.clear()
model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"])
@@ -73,7 +81,7 @@ def list_models(): if os.path.exists(cmd_ckpt):
h = model_hash(cmd_ckpt)
title, short_model_name = modeltitle(cmd_ckpt, h)
- checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, short_model_name, shared.cmd_opts.config)
+ checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, short_model_name)
shared.opts.data['sd_model_checkpoint'] = title
elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file:
print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr)
@@ -81,12 +89,7 @@ def list_models(): h = model_hash(filename)
title, short_model_name = modeltitle(filename, h)
- basename, _ = os.path.splitext(filename)
- config = basename + ".yaml"
- if not os.path.exists(config):
- config = shared.cmd_opts.config
-
- checkpoints_list[title] = CheckpointInfo(filename, title, h, short_model_name, config)
+ checkpoints_list[title] = CheckpointInfo(filename, title, h, short_model_name)
def get_closet_checkpoint_match(searchString):
@@ -278,12 +281,14 @@ def enable_midas_autodownload(): midas.api.load_model = load_model_wrapper
+
def load_model(checkpoint_info=None):
from modules import lowvram, sd_hijack
checkpoint_info = checkpoint_info or select_checkpoint()
+ checkpoint_config = find_checkpoint_config(checkpoint_info)
- if checkpoint_info.config != shared.cmd_opts.config:
- print(f"Loading config from: {checkpoint_info.config}")
+ if checkpoint_config != shared.cmd_opts.config:
+ print(f"Loading config from: {checkpoint_config}")
if shared.sd_model:
sd_hijack.model_hijack.undo_hijack(shared.sd_model)
@@ -291,7 +296,7 @@ def load_model(checkpoint_info=None): gc.collect()
devices.torch_gc()
- sd_config = OmegaConf.load(checkpoint_info.config)
+ sd_config = OmegaConf.load(checkpoint_config)
if should_hijack_inpainting(checkpoint_info):
# Hardcoded config for now...
@@ -301,7 +306,7 @@ def load_model(checkpoint_info=None): sd_config.model.params.finetune_keys = None
# Create a "fake" config with a different name so that we know to unload it when switching models.
- checkpoint_info = checkpoint_info._replace(config=checkpoint_info.config.replace(".yaml", "-inpainting.yaml"))
+ checkpoint_info = checkpoint_info._replace(config=checkpoint_config.replace(".yaml", "-inpainting.yaml"))
if not hasattr(sd_config.model.params, "use_ema"):
sd_config.model.params.use_ema = False
@@ -312,6 +317,7 @@ def load_model(checkpoint_info=None): sd_config.model.params.unet_config.params.use_fp16 = False
sd_model = instantiate_from_config(sd_config.model)
+
load_model_weights(sd_model, checkpoint_info)
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
@@ -336,14 +342,17 @@ def load_model(checkpoint_info=None): def reload_model_weights(sd_model=None, info=None):
from modules import lowvram, devices, sd_hijack
checkpoint_info = info or select_checkpoint()
-
+
if not sd_model:
sd_model = shared.sd_model
+ current_checkpoint_info = sd_model.sd_checkpoint_info
+ checkpoint_config = find_checkpoint_config(current_checkpoint_info)
+
if sd_model.sd_model_checkpoint == checkpoint_info.filename:
return
- if sd_model.sd_checkpoint_info.config != checkpoint_info.config or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info):
+ if checkpoint_config != find_checkpoint_config(checkpoint_info) or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info):
del sd_model
checkpoints_loaded.clear()
load_model(checkpoint_info)
@@ -356,13 +365,19 @@ def reload_model_weights(sd_model=None, info=None): sd_hijack.model_hijack.undo_hijack(sd_model)
- load_model_weights(sd_model, checkpoint_info)
-
- sd_hijack.model_hijack.hijack(sd_model)
- script_callbacks.model_loaded_callback(sd_model)
-
- if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
- sd_model.to(devices.device)
+ try:
+ load_model_weights(sd_model, checkpoint_info)
+ except Exception as e:
+ print("Failed to load checkpoint, restoring previous")
+ load_model_weights(sd_model, current_checkpoint_info)
+ raise
+ finally:
+ sd_hijack.model_hijack.hijack(sd_model)
+ script_callbacks.model_loaded_callback(sd_model)
+
+ if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
+ sd_model.to(devices.device)
print("Weights loaded.")
+
return sd_model
diff --git a/modules/shared.py b/modules/shared.py index 23657a93..9c9fd857 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -14,7 +14,7 @@ import modules.interrogate import modules.memmon
import modules.styles
import modules.devices as devices
-from modules import localization, sd_vae, extensions, script_loading
+from modules import localization, sd_vae, extensions, script_loading, errors
from modules.paths import models_path, script_path, sd_path
@@ -82,6 +82,7 @@ parser.add_argument('--vae-path', type=str, help='Path to Variational Autoencode parser.add_argument("--disable-safe-unpickle", action='store_true', help="disable checking pytorch models for malicious code", default=False)
parser.add_argument("--api", action='store_true', help="use api=True to launch the API together with the webui (use --nowebui instead for only the API)")
parser.add_argument("--api-auth", type=str, help='Set authentication for API like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
+parser.add_argument("--api-log", action='store_true', help="use api-log=True to enable logging of all API requests")
parser.add_argument("--nowebui", action='store_true', help="use api=True to launch the API instead of the webui")
parser.add_argument("--ui-debug-mode", action='store_true', help="Don't load model to quickly launch UI")
parser.add_argument("--device-id", type=str, help="Select the default CUDA device to use (export CUDA_VISIBLE_DEVICES=0,1,etc might be needed before)", default=None)
@@ -355,7 +356,7 @@ options_templates.update(options_section(('system', "System"), { options_templates.update(options_section(('training', "Training"), {
"unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training if possible. Saves VRAM."),
"pin_memory": OptionInfo(False, "Turn on pin_memory for DataLoader. Makes training slightly faster but can increase memory usage."),
- "save_optimizer_state": OptionInfo(False, "Saves Optimizer state as separate *.optim file. Training can be resumed with HN itself and matching optim file."),
+ "save_optimizer_state": OptionInfo(False, "Saves Optimizer state as separate *.optim file. Training of embedding or HN can be resumed with the matching optim file."),
"dataset_filename_word_regex": OptionInfo("", "Filename word regex"),
"dataset_filename_join_string": OptionInfo(" ", "Filename join string"),
"training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}),
@@ -494,7 +495,12 @@ class Options: return False
if self.data_labels[key].onchange is not None:
- self.data_labels[key].onchange()
+ try:
+ self.data_labels[key].onchange()
+ except Exception as e:
+ errors.display(e, f"changing setting {key} to {value}")
+ setattr(self, key, oldval)
+ return False
return True
@@ -559,8 +565,11 @@ if os.path.exists(config_filename): latent_upscale_default_mode = "Latent"
latent_upscale_modes = {
- "Latent": "bilinear",
- "Latent (nearest)": "nearest",
+ "Latent": {"mode": "bilinear", "antialias": False},
+ "Latent (antialiased)": {"mode": "bilinear", "antialias": True},
+ "Latent (bicubic)": {"mode": "bicubic", "antialias": False},
+ "Latent (bicubic antialiased)": {"mode": "bicubic", "antialias": True},
+ "Latent (nearest)": {"mode": "nearest", "antialias": False},
}
sd_upscalers = []
diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index 56b9b2eb..feb876c6 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -124,6 +124,7 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre files = listfiles(src)
+ shared.state.job = "preprocess"
shared.state.textinfo = "Preprocessing..."
shared.state.job_count = len(files)
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index fd253477..214db01c 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -28,6 +28,7 @@ class Embedding: self.cached_checksum = None
self.sd_checkpoint = None
self.sd_checkpoint_name = None
+ self.optimizer_state_dict = None
def save(self, filename):
embedding_data = {
@@ -41,6 +42,13 @@ class Embedding: torch.save(embedding_data, filename)
+ if shared.opts.save_optimizer_state and self.optimizer_state_dict is not None:
+ optimizer_saved_dict = {
+ 'hash': self.checksum(),
+ 'optimizer_state_dict': self.optimizer_state_dict,
+ }
+ torch.save(optimizer_saved_dict, filename + '.optim')
+
def checksum(self):
if self.cached_checksum is not None:
return self.cached_checksum
@@ -95,9 +103,10 @@ class EmbeddingDatabase: self.expected_shape = self.get_expected_shape()
def process_file(path, filename):
- name = os.path.splitext(filename)[0]
+ name, ext = os.path.splitext(filename)
+ ext = ext.upper()
- if os.path.splitext(filename.upper())[-1] in ['.PNG', '.WEBP', '.JXL', '.AVIF']:
+ if ext in ['.PNG', '.WEBP', '.JXL', '.AVIF']:
embed_image = Image.open(path)
if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text:
data = embedding_from_b64(embed_image.text['sd-ti-embedding'])
@@ -105,8 +114,10 @@ class EmbeddingDatabase: else:
data = extract_image_data_embed(embed_image)
name = data.get('name', name)
- else:
+ elif ext in ['.BIN', '.PT']:
data = torch.load(path, map_location="cpu")
+ else:
+ return
# textual inversion embeddings
if 'string_to_param' in data:
@@ -245,6 +256,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_ create_image_every = create_image_every or 0
validate_train_inputs(embedding_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_embedding_every, create_image_every, log_directory, name="embedding")
+ shared.state.job = "train-embedding"
shared.state.textinfo = "Initializing textual inversion training..."
shared.state.job_count = steps
@@ -300,6 +312,20 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_ embedding.vec.requires_grad = True
optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate, weight_decay=0.0)
+ if shared.opts.save_optimizer_state:
+ optimizer_state_dict = None
+ if os.path.exists(filename + '.optim'):
+ optimizer_saved_dict = torch.load(filename + '.optim', map_location='cpu')
+ if embedding.checksum() == optimizer_saved_dict.get('hash', None):
+ optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None)
+
+ if optimizer_state_dict is not None:
+ optimizer.load_state_dict(optimizer_state_dict)
+ print("Loaded existing optimizer from checkpoint")
+ else:
+ print("No saved optimizer exists in checkpoint")
+
+
scaler = torch.cuda.amp.GradScaler()
batch_size = ds.batch_size
@@ -366,9 +392,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_ # Before saving, change name to match current checkpoint.
embedding_name_every = f'{embedding_name}-{steps_done}'
last_saved_file = os.path.join(embedding_dir, f'{embedding_name_every}.pt')
- #if shared.opts.save_optimizer_state:
- #embedding.optimizer_state_dict = optimizer.state_dict()
- save_embedding(embedding, checkpoint, embedding_name_every, last_saved_file, remove_cached_checksum=True)
+ save_embedding(embedding, optimizer, checkpoint, embedding_name_every, last_saved_file, remove_cached_checksum=True)
embedding_yet_to_be_embedded = True
write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, steps_per_epoch, {
@@ -458,7 +482,7 @@ Last saved image: {html.escape(last_saved_image)}<br/> </p>
"""
filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
- save_embedding(embedding, checkpoint, embedding_name, filename, remove_cached_checksum=True)
+ save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, remove_cached_checksum=True)
except Exception:
print(traceback.format_exc(), file=sys.stderr)
pass
@@ -470,7 +494,7 @@ Last saved image: {html.escape(last_saved_image)}<br/> return embedding, filename
-def save_embedding(embedding, checkpoint, embedding_name, filename, remove_cached_checksum=True):
+def save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, remove_cached_checksum=True):
old_embedding_name = embedding.name
old_sd_checkpoint = embedding.sd_checkpoint if hasattr(embedding, "sd_checkpoint") else None
old_sd_checkpoint_name = embedding.sd_checkpoint_name if hasattr(embedding, "sd_checkpoint_name") else None
@@ -481,6 +505,7 @@ def save_embedding(embedding, checkpoint, embedding_name, filename, remove_cache if remove_cached_checksum:
embedding.cached_checksum = None
embedding.name = embedding_name
+ embedding.optimizer_state_dict = optimizer.state_dict()
embedding.save(filename)
except:
embedding.sd_checkpoint = old_sd_checkpoint
diff --git a/modules/ui.py b/modules/ui.py index d941cb5f..bfc93634 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -635,6 +635,7 @@ def create_sampler_and_steps_selection(choices, tabname): if opts.samplers_in_dropdown:
with FormRow(elem_id=f"sampler_selection_{tabname}"):
sampler_index = gr.Dropdown(label='Sampling method', elem_id=f"{tabname}_sampling", choices=[x.name for x in choices], value=choices[0].name, type="index")
+ sampler_index.save_to_config = True
steps = gr.Slider(minimum=1, maximum=150, step=1, elem_id=f"{tabname}_steps", label="Sampling Steps", value=20)
else:
with FormGroup(elem_id=f"sampler_selection_{tabname}"):
|