diff options
Diffstat (limited to 'modules')
-rw-r--r-- | modules/api/api.py | 83 | ||||
-rw-r--r-- | modules/api/models.py | 2 | ||||
-rw-r--r-- | modules/mac_specific.py | 3 | ||||
-rw-r--r-- | modules/models/diffusion/uni_pc/uni_pc.py | 2 | ||||
-rw-r--r-- | modules/shared.py | 5 | ||||
-rw-r--r-- | modules/ui_extra_networks.py | 2 |
6 files changed, 76 insertions, 21 deletions
diff --git a/modules/api/api.py b/modules/api/api.py index 376f7f04..35e17afc 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -164,14 +164,10 @@ class Api: raise HTTPException(status_code=401, detail="Incorrect username or password", headers={"WWW-Authenticate": "Basic"}) - def get_script(self, script_name, script_runner): - if script_name is None: + def get_selectable_script(self, script_name, script_runner): + if script_name is None or script_name == "": return None, None - if not script_runner.scripts: - script_runner.initialize_scripts(False) - ui.create_ui() - script_idx = script_name_to_index(script_name, script_runner.selectable_scripts) script = script_runner.selectable_scripts[script_idx] return script, script_idx @@ -182,8 +178,49 @@ class Api: return ScriptsList(txt2img = t2ilist, img2img = i2ilist) + def get_script(self, script_name, script_runner): + if script_name is None or script_name == "": + return None, None + + script_idx = script_name_to_index(script_name, script_runner.scripts) + return script_runner.scripts[script_idx] + + def init_script_args(self, request, selectable_scripts, selectable_idx, script_runner): + #find max idx from the scripts in runner and generate a none array to init script_args + last_arg_index = 1 + for script in script_runner.scripts: + if last_arg_index < script.args_to: + last_arg_index = script.args_to + # None everywhere except position 0 to initialize script args + script_args = [None]*last_arg_index + # position 0 in script_arg is the idx+1 of the selectable script that is going to be run when using scripts.scripts_*2img.run() + if selectable_scripts: + script_args[selectable_scripts.args_from:selectable_scripts.args_to] = request.script_args + script_args[0] = selectable_idx + 1 + else: + # when [0] = 0 no selectable script to run + script_args[0] = 0 + + # Now check for always on scripts + if request.alwayson_scripts and (len(request.alwayson_scripts) > 0): + for alwayson_script_name in request.alwayson_scripts.keys(): + alwayson_script = self.get_script(alwayson_script_name, script_runner) + if alwayson_script == None: + raise HTTPException(status_code=422, detail=f"always on script {alwayson_script_name} not found") + # Selectable script in always on script param check + if alwayson_script.alwayson == False: + raise HTTPException(status_code=422, detail=f"Cannot have a selectable script in the always on scripts params") + # always on script with no arg should always run so you don't really need to add them to the requests + if "args" in request.alwayson_scripts[alwayson_script_name]: + script_args[alwayson_script.args_from:alwayson_script.args_to] = request.alwayson_scripts[alwayson_script_name]["args"] + return script_args + def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI): - script, script_idx = self.get_script(txt2imgreq.script_name, scripts.scripts_txt2img) + script_runner = scripts.scripts_txt2img + if not script_runner.scripts: + script_runner.initialize_scripts(False) + ui.create_ui() + selectable_scripts, selectable_script_idx = self.get_selectable_script(txt2imgreq.script_name, script_runner) populate = txt2imgreq.copy(update={ # Override __init__ params "sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index), @@ -195,20 +232,26 @@ class Api: args = vars(populate) args.pop('script_name', None) + args.pop('script_args', None) # will refeed them to the pipeline directly after initializing them + args.pop('alwayson_scripts', None) + + script_args = self.init_script_args(txt2imgreq, selectable_scripts, selectable_script_idx, script_runner) send_images = args.pop('send_images', True) args.pop('save_images', None) with self.queue_lock: p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args) + p.scripts = script_runner p.outpath_grids = opts.outdir_txt2img_grids p.outpath_samples = opts.outdir_txt2img_samples shared.state.begin() - if script is not None: - p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args - processed = scripts.scripts_txt2img.run(p, *p.script_args) + if selectable_scripts != None: + p.script_args = script_args + processed = scripts.scripts_txt2img.run(p, *p.script_args) # Need to pass args as list here else: + p.script_args = tuple(script_args) # Need to pass args as tuple here processed = process_images(p) shared.state.end() @@ -221,12 +264,16 @@ class Api: if init_images is None: raise HTTPException(status_code=404, detail="Init image not found") - script, script_idx = self.get_script(img2imgreq.script_name, scripts.scripts_img2img) - mask = img2imgreq.mask if mask: mask = decode_base64_to_image(mask) + script_runner = scripts.scripts_img2img + if not script_runner.scripts: + script_runner.initialize_scripts(True) + ui.create_ui() + selectable_scripts, selectable_script_idx = self.get_selectable_script(img2imgreq.script_name, script_runner) + populate = img2imgreq.copy(update={ # Override __init__ params "sampler_name": validate_sampler_name(img2imgreq.sampler_name or img2imgreq.sampler_index), "do_not_save_samples": not img2imgreq.save_images, @@ -239,6 +286,10 @@ class Api: args = vars(populate) args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine. args.pop('script_name', None) + args.pop('script_args', None) # will refeed them to the pipeline directly after initializing them + args.pop('alwayson_scripts', None) + + script_args = self.init_script_args(img2imgreq, selectable_scripts, selectable_script_idx, script_runner) send_images = args.pop('send_images', True) args.pop('save_images', None) @@ -246,14 +297,16 @@ class Api: with self.queue_lock: p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args) p.init_images = [decode_base64_to_image(x) for x in init_images] + p.scripts = script_runner p.outpath_grids = opts.outdir_img2img_grids p.outpath_samples = opts.outdir_img2img_samples shared.state.begin() - if script is not None: - p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args - processed = scripts.scripts_img2img.run(p, *p.script_args) + if selectable_scripts != None: + p.script_args = script_args + processed = scripts.scripts_img2img.run(p, *p.script_args) # Need to pass args as list here else: + p.script_args = tuple(script_args) # Need to pass args as tuple here processed = process_images(p) shared.state.end() diff --git a/modules/api/models.py b/modules/api/models.py index fa1c40df..4a70f440 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -106,6 +106,7 @@ StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator( {"key": "script_args", "type": list, "default": []}, {"key": "send_images", "type": bool, "default": True}, {"key": "save_images", "type": bool, "default": False}, + {"key": "alwayson_scripts", "type": dict, "default": {}}, ] ).generate_model() @@ -122,6 +123,7 @@ StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator( {"key": "script_args", "type": list, "default": []}, {"key": "send_images", "type": bool, "default": True}, {"key": "save_images", "type": bool, "default": False}, + {"key": "alwayson_scripts", "type": dict, "default": {}}, ] ).generate_model() diff --git a/modules/mac_specific.py b/modules/mac_specific.py index ddcea53b..18e6ff72 100644 --- a/modules/mac_specific.py +++ b/modules/mac_specific.py @@ -23,7 +23,7 @@ def cumsum_fix(input, cumsum_func, *args, **kwargs): output_dtype = kwargs.get('dtype', input.dtype) if output_dtype == torch.int64: return cumsum_func(input.cpu(), *args, **kwargs).to(input.device) - elif cumsum_needs_bool_fix and output_dtype == torch.bool or cumsum_needs_int_fix and (output_dtype == torch.int8 or output_dtype == torch.int16): + elif output_dtype == torch.bool or cumsum_needs_int_fix and (output_dtype == torch.int8 or output_dtype == torch.int16): return cumsum_func(input.to(torch.int32), *args, **kwargs).to(torch.int64) return cumsum_func(input, *args, **kwargs) @@ -45,7 +45,6 @@ if has_mps: CondFunc('torch.Tensor.numpy', lambda orig_func, self, *args, **kwargs: orig_func(self.detach(), *args, **kwargs), lambda _, self, *args, **kwargs: self.requires_grad) elif version.parse(torch.__version__) > version.parse("1.13.1"): cumsum_needs_int_fix = not torch.Tensor([1,2]).to(torch.device("mps")).equal(torch.ShortTensor([1,1]).to(torch.device("mps")).cumsum(0)) - cumsum_needs_bool_fix = not torch.BoolTensor([True,True]).to(device=torch.device("mps"), dtype=torch.int64).equal(torch.BoolTensor([True,False]).to(torch.device("mps")).cumsum(0)) cumsum_fix_func = lambda orig_func, input, *args, **kwargs: cumsum_fix(input, orig_func, *args, **kwargs) CondFunc('torch.cumsum', cumsum_fix_func, None) CondFunc('torch.Tensor.cumsum', cumsum_fix_func, None) diff --git a/modules/models/diffusion/uni_pc/uni_pc.py b/modules/models/diffusion/uni_pc/uni_pc.py index df63d1bc..e9a093a2 100644 --- a/modules/models/diffusion/uni_pc/uni_pc.py +++ b/modules/models/diffusion/uni_pc/uni_pc.py @@ -719,7 +719,7 @@ class UniPC: x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t) else: x_t_ = ( - expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dimss) * x + expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x - expand_dims(sigma_t * h_phi_1, dims) * model_prev_0 ) if x_t is None: diff --git a/modules/shared.py b/modules/shared.py index 4e229353..2fb9e3b5 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -116,7 +116,10 @@ parser.add_argument("--no-download-sd-model", action='store_true', help="don't d script_loading.preload_extensions(extensions.extensions_dir, parser)
script_loading.preload_extensions(extensions.extensions_builtin_dir, parser)
-cmd_opts = parser.parse_args()
+if os.environ.get('IGNORE_CMD_ARGS_ERRORS', None) is None:
+ cmd_opts = parser.parse_args()
+else:
+ cmd_opts, _ = parser.parse_known_args()
restricted_opts = {
"samples_filename_pattern",
diff --git a/modules/ui_extra_networks.py b/modules/ui_extra_networks.py index 85f0af4c..01df5e90 100644 --- a/modules/ui_extra_networks.py +++ b/modules/ui_extra_networks.py @@ -213,7 +213,6 @@ def create_ui(container, button, tabname): filter = gr.Textbox('', show_label=False, elem_id=tabname+"_extra_search", placeholder="Search...", visible=False)
button_refresh = gr.Button('Refresh', elem_id=tabname+"_extra_refresh")
- button_close = gr.Button('Close', elem_id=tabname+"_extra_close")
ui.button_save_preview = gr.Button('Save preview', elem_id=tabname+"_save_preview", visible=False)
ui.preview_target_filename = gr.Textbox('Preview save filename', elem_id=tabname+"_preview_filename", visible=False)
@@ -224,7 +223,6 @@ def create_ui(container, button, tabname): state_visible = gr.State(value=False)
button.click(fn=toggle_visibility, inputs=[state_visible], outputs=[state_visible, container])
- button_close.click(fn=toggle_visibility, inputs=[state_visible], outputs=[state_visible, container])
def refresh():
res = []
|