aboutsummaryrefslogtreecommitdiffstats
path: root/scripts
diff options
context:
space:
mode:
Diffstat (limited to 'scripts')
-rw-r--r--scripts/custom_code.py63
-rw-r--r--scripts/img2imgalt.py34
-rw-r--r--scripts/loopback.py100
-rw-r--r--scripts/outpainting_mk_2.py2
-rw-r--r--scripts/poor_mans_outpainting.py2
-rw-r--r--scripts/postprocessing_upscale.py44
-rw-r--r--scripts/prompt_matrix.py26
-rw-r--r--scripts/xyz_grid.py278
8 files changed, 382 insertions, 167 deletions
diff --git a/scripts/custom_code.py b/scripts/custom_code.py
index d29113e6..4071d86d 100644
--- a/scripts/custom_code.py
+++ b/scripts/custom_code.py
@@ -1,9 +1,40 @@
import modules.scripts as scripts
import gradio as gr
+import ast
+import copy
from modules.processing import Processed
from modules.shared import opts, cmd_opts, state
+
+def convertExpr2Expression(expr):
+ expr.lineno = 0
+ expr.col_offset = 0
+ result = ast.Expression(expr.value, lineno=0, col_offset = 0)
+
+ return result
+
+
+def exec_with_return(code, module):
+ """
+ like exec() but can return values
+ https://stackoverflow.com/a/52361938/5862977
+ """
+ code_ast = ast.parse(code)
+
+ init_ast = copy.deepcopy(code_ast)
+ init_ast.body = code_ast.body[:-1]
+
+ last_ast = copy.deepcopy(code_ast)
+ last_ast.body = code_ast.body[-1:]
+
+ exec(compile(init_ast, "<ast>", "exec"), module.__dict__)
+ if type(last_ast.body[0]) == ast.Expr:
+ return eval(compile(convertExpr2Expression(last_ast.body[0]), "<ast>", "eval"), module.__dict__)
+ else:
+ exec(compile(last_ast, "<ast>", "exec"), module.__dict__)
+
+
class Script(scripts.Script):
def title(self):
@@ -13,12 +44,23 @@ class Script(scripts.Script):
return cmd_opts.allow_code
def ui(self, is_img2img):
- code = gr.Textbox(label="Python code", lines=1, elem_id=self.elem_id("code"))
+ example = """from modules.processing import process_images
+
+p.width = 768
+p.height = 768
+p.batch_size = 2
+p.steps = 10
+
+return process_images(p)
+"""
+
- return [code]
+ code = gr.Code(value=example, language="python", label="Python code", elem_id=self.elem_id("code"))
+ indent_level = gr.Number(label='Indent level', value=2, precision=0, elem_id=self.elem_id("indent_level"))
+ return [code, indent_level]
- def run(self, p, code):
+ def run(self, p, code, indent_level):
assert cmd_opts.allow_code, '--allow-code option must be enabled'
display_result_data = [[], -1, ""]
@@ -29,13 +71,20 @@ class Script(scripts.Script):
display_result_data[2] = i
from types import ModuleType
- compiled = compile(code, '', 'exec')
module = ModuleType("testmodule")
module.__dict__.update(globals())
module.p = p
module.display = display
- exec(compiled, module.__dict__)
+
+ indent = " " * indent_level
+ indented = code.replace('\n', '\n' + indent)
+ body = f"""def __webuitemp__():
+{indent}{indented}
+__webuitemp__()"""
+
+ result = exec_with_return(body, module)
+
+ if isinstance(result, Processed):
+ return result
return Processed(p, *display_result_data)
-
- \ No newline at end of file
diff --git a/scripts/img2imgalt.py b/scripts/img2imgalt.py
index cbdfc6b3..bb00fb3f 100644
--- a/scripts/img2imgalt.py
+++ b/scripts/img2imgalt.py
@@ -6,23 +6,21 @@ from tqdm import trange
import modules.scripts as scripts
import gradio as gr
-from modules import processing, shared, sd_samplers, prompt_parser
-from modules.processing import Processed
-from modules.shared import opts, cmd_opts, state
+from modules import processing, shared, sd_samplers, sd_samplers_common
import torch
import k_diffusion as K
-from PIL import Image
-from torch import autocast
-from einops import rearrange, repeat
-
-
def find_noise_for_image(p, cond, uncond, cfg_scale, steps):
x = p.init_latent
s_in = x.new_ones([x.shape[0]])
- dnw = K.external.CompVisDenoiser(shared.sd_model)
+ if shared.sd_model.parameterization == "v":
+ dnw = K.external.CompVisVDenoiser(shared.sd_model)
+ skip = 1
+ else:
+ dnw = K.external.CompVisDenoiser(shared.sd_model)
+ skip = 0
sigmas = dnw.get_sigmas(steps).flip(0)
shared.state.sampling_steps = steps
@@ -37,7 +35,7 @@ def find_noise_for_image(p, cond, uncond, cfg_scale, steps):
image_conditioning = torch.cat([p.image_conditioning] * 2)
cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]}
- c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)]
+ c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)[skip:]]
t = dnw.sigma_to_t(sigma_in)
eps = shared.sd_model.apply_model(x_in * c_in, t, cond=cond_in)
@@ -50,7 +48,7 @@ def find_noise_for_image(p, cond, uncond, cfg_scale, steps):
x = x + d * dt
- sd_samplers.store_latent(x)
+ sd_samplers_common.store_latent(x)
# This shouldn't be necessary, but solved some VRAM issues
del x_in, sigma_in, cond_in, c_out, c_in, t,
@@ -69,7 +67,12 @@ def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps):
x = p.init_latent
s_in = x.new_ones([x.shape[0]])
- dnw = K.external.CompVisDenoiser(shared.sd_model)
+ if shared.sd_model.parameterization == "v":
+ dnw = K.external.CompVisVDenoiser(shared.sd_model)
+ skip = 1
+ else:
+ dnw = K.external.CompVisDenoiser(shared.sd_model)
+ skip = 0
sigmas = dnw.get_sigmas(steps).flip(0)
shared.state.sampling_steps = steps
@@ -84,7 +87,7 @@ def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps):
image_conditioning = torch.cat([p.image_conditioning] * 2)
cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]}
- c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)]
+ c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)[skip:]]
if i == 1:
t = dnw.sigma_to_t(torch.cat([sigmas[i] * s_in] * 2))
@@ -104,7 +107,7 @@ def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps):
dt = sigmas[i] - sigmas[i - 1]
x = x + d * dt
- sd_samplers.store_latent(x)
+ sd_samplers_common.store_latent(x)
# This shouldn't be necessary, but solved some VRAM issues
del x_in, sigma_in, cond_in, c_out, c_in, t,
@@ -125,7 +128,7 @@ class Script(scripts.Script):
def show(self, is_img2img):
return is_img2img
- def ui(self, is_img2img):
+ def ui(self, is_img2img):
info = gr.Markdown('''
* `CFG Scale` should be 2 or lower.
''')
@@ -213,4 +216,3 @@ class Script(scripts.Script):
processed = processing.process_images(p)
return processed
-
diff --git a/scripts/loopback.py b/scripts/loopback.py
index 1dab9476..d3065fe6 100644
--- a/scripts/loopback.py
+++ b/scripts/loopback.py
@@ -1,13 +1,10 @@
-import numpy as np
-from tqdm import trange
+import math
-import modules.scripts as scripts
import gradio as gr
-
-from modules import processing, shared, sd_samplers, images
+import modules.scripts as scripts
+from modules import deepbooru, images, processing, shared
from modules.processing import Processed
-from modules.sd_samplers import samplers
-from modules.shared import opts, cmd_opts, state
+from modules.shared import opts, state
class Script(scripts.Script):
@@ -19,37 +16,65 @@ class Script(scripts.Script):
def ui(self, is_img2img):
loops = gr.Slider(minimum=1, maximum=32, step=1, label='Loops', value=4, elem_id=self.elem_id("loops"))
- denoising_strength_change_factor = gr.Slider(minimum=0.9, maximum=1.1, step=0.01, label='Denoising strength change factor', value=1, elem_id=self.elem_id("denoising_strength_change_factor"))
+ final_denoising_strength = gr.Slider(minimum=0, maximum=1, step=0.01, label='Final denoising strength', value=0.5, elem_id=self.elem_id("final_denoising_strength"))
+ denoising_curve = gr.Dropdown(label="Denoising strength curve", choices=["Aggressive", "Linear", "Lazy"], value="Linear")
+ append_interrogation = gr.Dropdown(label="Append interrogated prompt at each iteration", choices=["None", "CLIP", "DeepBooru"], value="None")
- return [loops, denoising_strength_change_factor]
+ return [loops, final_denoising_strength, denoising_curve, append_interrogation]
- def run(self, p, loops, denoising_strength_change_factor):
+ def run(self, p, loops, final_denoising_strength, denoising_curve, append_interrogation):
processing.fix_seed(p)
batch_count = p.n_iter
p.extra_generation_params = {
- "Denoising strength change factor": denoising_strength_change_factor,
+ "Final denoising strength": final_denoising_strength,
+ "Denoising curve": denoising_curve
}
p.batch_size = 1
p.n_iter = 1
- output_images, info = None, None
+ info = None
initial_seed = None
initial_info = None
+ initial_denoising_strength = p.denoising_strength
grids = []
all_images = []
original_init_image = p.init_images
+ original_prompt = p.prompt
+ original_inpainting_fill = p.inpainting_fill
state.job_count = loops * batch_count
initial_color_corrections = [processing.setup_color_correction(p.init_images[0])]
- for n in range(batch_count):
- history = []
+ def calculate_denoising_strength(loop):
+ strength = initial_denoising_strength
+
+ if loops == 1:
+ return strength
+ progress = loop / (loops - 1)
+ if denoising_curve == "Aggressive":
+ strength = math.sin((progress) * math.pi * 0.5)
+ elif denoising_curve == "Lazy":
+ strength = 1 - math.cos((progress) * math.pi * 0.5)
+ else:
+ strength = progress
+
+ change = (final_denoising_strength - initial_denoising_strength) * strength
+ return initial_denoising_strength + change
+
+ history = []
+
+ for n in range(batch_count):
# Reset to original init image at the start of each batch
p.init_images = original_init_image
+ # Reset to original denoising strength
+ p.denoising_strength = initial_denoising_strength
+
+ last_image = None
+
for i in range(loops):
p.n_iter = 1
p.batch_size = 1
@@ -58,30 +83,57 @@ class Script(scripts.Script):
if opts.img2img_color_correction:
p.color_corrections = initial_color_corrections
+ if append_interrogation != "None":
+ p.prompt = original_prompt + ", " if original_prompt != "" else ""
+ if append_interrogation == "CLIP":
+ p.prompt += shared.interrogator.interrogate(p.init_images[0])
+ elif append_interrogation == "DeepBooru":
+ p.prompt += deepbooru.model.tag(p.init_images[0])
+
state.job = f"Iteration {i + 1}/{loops}, batch {n + 1}/{batch_count}"
processed = processing.process_images(p)
+ # Generation cancelled.
+ if state.interrupted:
+ break
+
if initial_seed is None:
initial_seed = processed.seed
initial_info = processed.info
- init_img = processed.images[0]
-
- p.init_images = [init_img]
p.seed = processed.seed + 1
- p.denoising_strength = min(max(p.denoising_strength * denoising_strength_change_factor, 0.1), 1)
- history.append(processed.images[0])
+ p.denoising_strength = calculate_denoising_strength(i + 1)
+
+ if state.skipped:
+ break
+
+ last_image = processed.images[0]
+ p.init_images = [last_image]
+ p.inpainting_fill = 1 # Set "masked content" to "original" for next loop.
+ if batch_count == 1:
+ history.append(last_image)
+ all_images.append(last_image)
+
+ if batch_count > 1 and not state.skipped and not state.interrupted:
+ history.append(last_image)
+ all_images.append(last_image)
+
+ p.inpainting_fill = original_inpainting_fill
+
+ if state.interrupted:
+ break
+
+ if len(history) > 1:
grid = images.image_grid(history, rows=1)
if opts.grid_save:
images.save_image(grid, p.outpath_grids, "grid", initial_seed, p.prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename, grid=True, p=p)
- grids.append(grid)
- all_images += history
-
- if opts.return_grid:
- all_images = grids + all_images
+ if opts.return_grid:
+ grids.append(grid)
+
+ all_images = grids + all_images
processed = Processed(p, all_images, initial_seed, initial_info)
diff --git a/scripts/outpainting_mk_2.py b/scripts/outpainting_mk_2.py
index 0906da6a..670bb8ac 100644
--- a/scripts/outpainting_mk_2.py
+++ b/scripts/outpainting_mk_2.py
@@ -275,7 +275,7 @@ class Script(scripts.Script):
if opts.samples_save:
for img in all_processed_images:
- images.save_image(img, p.outpath_samples, "", res.seed, p.prompt, opts.grid_format, info=res.info, p=p)
+ images.save_image(img, p.outpath_samples, "", res.seed, p.prompt, opts.samples_format, info=res.info, p=p)
if opts.grid_save and not unwanted_grid_because_of_img_count:
images.save_image(combined_grid_image, p.outpath_grids, "grid", res.seed, p.prompt, opts.grid_format, info=res.info, short_filename=not opts.grid_extended_filename, grid=True, p=p)
diff --git a/scripts/poor_mans_outpainting.py b/scripts/poor_mans_outpainting.py
index d8feda00..ddcbd2d3 100644
--- a/scripts/poor_mans_outpainting.py
+++ b/scripts/poor_mans_outpainting.py
@@ -138,7 +138,7 @@ class Script(scripts.Script):
combined_image = images.combine_grid(grid)
if opts.samples_save:
- images.save_image(combined_image, p.outpath_samples, "", initial_seed, p.prompt, opts.grid_format, info=initial_info, p=p)
+ images.save_image(combined_image, p.outpath_samples, "", initial_seed, p.prompt, opts.samples_format, info=initial_info, p=p)
processed = Processed(p, [combined_image], initial_seed, initial_info)
diff --git a/scripts/postprocessing_upscale.py b/scripts/postprocessing_upscale.py
index 8842bd91..ef1186ac 100644
--- a/scripts/postprocessing_upscale.py
+++ b/scripts/postprocessing_upscale.py
@@ -4,8 +4,8 @@ import numpy as np
from modules import scripts_postprocessing, shared
import gradio as gr
-from modules.ui_components import FormRow
-
+from modules.ui_components import FormRow, ToolButton
+from modules.ui import switch_values_symbol
upscale_cache = {}
@@ -17,23 +17,29 @@ class ScriptPostprocessingUpscale(scripts_postprocessing.ScriptPostprocessing):
def ui(self):
selected_tab = gr.State(value=0)
- with gr.Tabs(elem_id="extras_resize_mode"):
- with gr.TabItem('Scale by', elem_id="extras_scale_by_tab") as tab_scale_by:
- upscaling_resize = gr.Slider(minimum=1.0, maximum=8.0, step=0.05, label="Resize", value=4, elem_id="extras_upscaling_resize")
-
- with gr.TabItem('Scale to', elem_id="extras_scale_to_tab") as tab_scale_to:
- with FormRow():
- upscaling_resize_w = gr.Number(label="Width", value=512, precision=0, elem_id="extras_upscaling_resize_w")
- upscaling_resize_h = gr.Number(label="Height", value=512, precision=0, elem_id="extras_upscaling_resize_h")
- upscaling_crop = gr.Checkbox(label='Crop to fit', value=True, elem_id="extras_upscaling_crop")
-
- with FormRow():
- extras_upscaler_1 = gr.Dropdown(label='Upscaler 1', elem_id="extras_upscaler_1", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name)
-
- with FormRow():
- extras_upscaler_2 = gr.Dropdown(label='Upscaler 2', elem_id="extras_upscaler_2", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name)
- extras_upscaler_2_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Upscaler 2 visibility", value=0.0, elem_id="extras_upscaler_2_visibility")
-
+ with gr.Column():
+ with FormRow():
+ with gr.Tabs(elem_id="extras_resize_mode"):
+ with gr.TabItem('Scale by', elem_id="extras_scale_by_tab") as tab_scale_by:
+ upscaling_resize = gr.Slider(minimum=1.0, maximum=8.0, step=0.05, label="Resize", value=4, elem_id="extras_upscaling_resize")
+
+ with gr.TabItem('Scale to', elem_id="extras_scale_to_tab") as tab_scale_to:
+ with FormRow():
+ with gr.Column(elem_id="upscaling_column_size", scale=4):
+ upscaling_resize_w = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="extras_upscaling_resize_w")
+ upscaling_resize_h = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="extras_upscaling_resize_h")
+ with gr.Column(elem_id="upscaling_dimensions_row", scale=1, elem_classes="dimensions-tools"):
+ upscaling_res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="upscaling_res_switch_btn")
+ upscaling_crop = gr.Checkbox(label='Crop to fit', value=True, elem_id="extras_upscaling_crop")
+
+ with FormRow():
+ extras_upscaler_1 = gr.Dropdown(label='Upscaler 1', elem_id="extras_upscaler_1", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name)
+
+ with FormRow():
+ extras_upscaler_2 = gr.Dropdown(label='Upscaler 2', elem_id="extras_upscaler_2", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name)
+ extras_upscaler_2_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Upscaler 2 visibility", value=0.0, elem_id="extras_upscaler_2_visibility")
+
+ upscaling_res_switch_btn.click(lambda w, h: (h, w), inputs=[upscaling_resize_w, upscaling_resize_h], outputs=[upscaling_resize_w, upscaling_resize_h], show_progress=False)
tab_scale_by.select(fn=lambda: 0, inputs=[], outputs=[selected_tab])
tab_scale_to.select(fn=lambda: 1, inputs=[], outputs=[selected_tab])
diff --git a/scripts/prompt_matrix.py b/scripts/prompt_matrix.py
index de921ea8..e9b11517 100644
--- a/scripts/prompt_matrix.py
+++ b/scripts/prompt_matrix.py
@@ -48,23 +48,17 @@ class Script(scripts.Script):
gr.HTML('<br />')
with gr.Row():
with gr.Column():
- put_at_start = gr.Checkbox(label='Put variable parts at start of prompt',
- value=False, elem_id=self.elem_id("put_at_start"))
+ put_at_start = gr.Checkbox(label='Put variable parts at start of prompt', value=False, elem_id=self.elem_id("put_at_start"))
+ different_seeds = gr.Checkbox(label='Use different seed for each picture', value=False, elem_id=self.elem_id("different_seeds"))
with gr.Column():
- # Radio buttons for selecting the prompt between positive and negative
- prompt_type = gr.Radio(["positive", "negative"], label="Select prompt",
- elem_id=self.elem_id("prompt_type"), value="positive")
- with gr.Row():
- with gr.Column():
- different_seeds = gr.Checkbox(
- label='Use different seed for each picture', value=False, elem_id=self.elem_id("different_seeds"))
+ prompt_type = gr.Radio(["positive", "negative"], label="Select prompt", elem_id=self.elem_id("prompt_type"), value="positive")
+ variations_delimiter = gr.Radio(["comma", "space"], label="Select joining char", elem_id=self.elem_id("variations_delimiter"), value="comma")
with gr.Column():
- # Radio buttons for selecting the delimiter to use in the resulting prompt
- variations_delimiter = gr.Radio(["comma", "space"], label="Select delimiter", elem_id=self.elem_id(
- "variations_delimiter"), value="comma")
- return [put_at_start, different_seeds, prompt_type, variations_delimiter]
+ margin_size = gr.Slider(label="Grid margins (px)", minimum=0, maximum=500, value=0, step=2, elem_id=self.elem_id("margin_size"))
+
+ return [put_at_start, different_seeds, prompt_type, variations_delimiter, margin_size]
- def run(self, p, put_at_start, different_seeds, prompt_type, variations_delimiter):
+ def run(self, p, put_at_start, different_seeds, prompt_type, variations_delimiter, margin_size):
modules.processing.fix_seed(p)
# Raise error if promp type is not positive or negative
if prompt_type not in ["positive", "negative"]:
@@ -105,8 +99,8 @@ class Script(scripts.Script):
p.prompt_for_display = positive_prompt
processed = process_images(p)
- grid = images.image_grid(processed.images, p.batch_size, rows=1 << ((len(prompt_matrix_parts) - 1) // 2))
- grid = images.draw_prompt_matrix(grid, p.width, p.height, prompt_matrix_parts)
+ grid = images.image_grid(processed.images, p.batch_size, rows=1 << ((len(prompt_matrix_parts) - 1) // 2))
+ grid = images.draw_prompt_matrix(grid, processed.images[0].width, processed.images[0].height, prompt_matrix_parts, margin_size)
processed.images.insert(0, grid)
processed.index_of_first_image = 1
processed.infotexts.insert(0, processed.infotexts[0])
diff --git a/scripts/xyz_grid.py b/scripts/xyz_grid.py
index 3122f6f6..398065d9 100644
--- a/scripts/xyz_grid.py
+++ b/scripts/xyz_grid.py
@@ -25,6 +25,8 @@ from modules.ui_components import ToolButton
fill_values_symbol = "\U0001f4d2" # 📒
+AxisInfo = namedtuple('AxisInfo', ['axis', 'values'])
+
def apply_field(field):
def fun(p, x, xs):
@@ -126,6 +128,24 @@ def apply_styles(p: StableDiffusionProcessingTxt2Img, x: str, _):
p.styles.extend(x.split(','))
+def apply_uni_pc_order(p, x, xs):
+ opts.data["uni_pc_order"] = min(x, p.steps - 1)
+
+
+def apply_face_restore(p, opt, x):
+ opt = opt.lower()
+ if opt == 'codeformer':
+ is_active = True
+ p.face_restoration_model = 'CodeFormer'
+ elif opt == 'gfpgan':
+ is_active = True
+ p.face_restoration_model = 'GFPGAN'
+ else:
+ is_active = opt in ('true', 'yes', 'y', '1')
+
+ p.restore_faces = is_active
+
+
def format_value_add_label(p, opt, x):
if type(x) == float:
x = round(x, 8)
@@ -186,11 +206,13 @@ axis_options = [
AxisOption("Steps", int, apply_field("steps")),
AxisOptionTxt2Img("Hires steps", int, apply_field("hr_second_pass_steps")),
AxisOption("CFG Scale", float, apply_field("cfg_scale")),
+ AxisOptionImg2Img("Image CFG Scale", float, apply_field("image_cfg_scale")),
AxisOption("Prompt S/R", str, apply_prompt, format_value=format_value),
AxisOption("Prompt order", str_permutations, apply_order, format_value=format_value_join_list),
AxisOptionTxt2Img("Sampler", str, apply_sampler, format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers]),
AxisOptionImg2Img("Sampler", str, apply_sampler, format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers_for_img2img]),
- AxisOption("Checkpoint name", str, apply_checkpoint, format_value=format_value, confirm=confirm_checkpoints, cost=1.0, choices=lambda: list(sd_models.checkpoints_list)),
+ AxisOption("Checkpoint name", str, apply_checkpoint, format_value=format_value, confirm=confirm_checkpoints, cost=1.0, choices=lambda: sorted(sd_models.checkpoints_list, key=str.casefold)),
+ AxisOption("Negative Guidance minimum sigma", float, apply_field("s_min_uncond")),
AxisOption("Sigma Churn", float, apply_field("s_churn")),
AxisOption("Sigma min", float, apply_field("s_tmin")),
AxisOption("Sigma max", float, apply_field("s_tmax")),
@@ -202,54 +224,57 @@ axis_options = [
AxisOptionImg2Img("Cond. Image Mask Weight", float, apply_field("inpainting_mask_weight")),
AxisOption("VAE", str, apply_vae, cost=0.7, choices=lambda: list(sd_vae.vae_dict)),
AxisOption("Styles", str, apply_styles, choices=lambda: list(shared.prompt_styles.styles)),
+ AxisOption("UniPC Order", int, apply_uni_pc_order, cost=0.5),
+ AxisOption("Face restore", str, apply_face_restore, format_value=format_value),
]
-def draw_xyz_grid(p, xs, ys, zs, x_labels, y_labels, z_labels, cell, draw_legend, include_lone_images, include_sub_grids, first_axes_processed, second_axes_processed):
+def draw_xyz_grid(p, xs, ys, zs, x_labels, y_labels, z_labels, cell, draw_legend, include_lone_images, include_sub_grids, first_axes_processed, second_axes_processed, margin_size):
hor_texts = [[images.GridAnnotation(x)] for x in x_labels]
ver_texts = [[images.GridAnnotation(y)] for y in y_labels]
title_texts = [[images.GridAnnotation(z)] for z in z_labels]
- # Temporary list of all the images that are generated to be populated into the grid.
- # Will be filled with empty images for any individual step that fails to process properly
- image_cache = [None] * (len(xs) * len(ys) * len(zs))
+ list_size = (len(xs) * len(ys) * len(zs))
processed_result = None
- cell_mode = "P"
- cell_size = (1, 1)
- state.job_count = len(xs) * len(ys) * len(zs) * p.n_iter
+ state.job_count = list_size * p.n_iter
def process_cell(x, y, z, ix, iy, iz):
- nonlocal image_cache, processed_result, cell_mode, cell_size
+ nonlocal processed_result
def index(ix, iy, iz):
return ix + iy * len(xs) + iz * len(xs) * len(ys)
- state.job = f"{index(ix, iy, iz) + 1} out of {len(xs) * len(ys) * len(zs)}"
-
- processed: Processed = cell(x, y, z)
-
- try:
- # this dereference will throw an exception if the image was not processed
- # (this happens in cases such as if the user stops the process from the UI)
- processed_image = processed.images[0]
-
- if processed_result is None:
- # Use our first valid processed result as a template container to hold our full results
- processed_result = copy(processed)
- cell_mode = processed_image.mode
- cell_size = processed_image.size
- processed_result.images = [Image.new(cell_mode, cell_size)]
+ state.job = f"{index(ix, iy, iz) + 1} out of {list_size}"
+
+ processed: Processed = cell(x, y, z, ix, iy, iz)
+
+ if processed_result is None:
+ # Use our first processed result object as a template container to hold our full results
+ processed_result = copy(processed)
+ processed_result.images = [None] * list_size
+ processed_result.all_prompts = [None] * list_size
+ processed_result.all_seeds = [None] * list_size
+ processed_result.infotexts = [None] * list_size
+ processed_result.index_of_first_image = 1
+
+ idx = index(ix, iy, iz)
+ if processed.images:
+ # Non-empty list indicates some degree of success.
+ processed_result.images[idx] = processed.images[0]
+ processed_result.all_prompts[idx] = processed.prompt
+ processed_result.all_seeds[idx] = processed.seed
+ processed_result.infotexts[idx] = processed.infotexts[0]
+ else:
+ cell_mode = "P"
+ cell_size = (processed_result.width, processed_result.height)
+ if processed_result.images[0] is not None:
+ cell_mode = processed_result.images[0].mode
+ #This corrects size in case of batches:
+ cell_size = processed_result.images[0].size
+ processed_result.images[idx] = Image.new(cell_mode, cell_size)
- image_cache[index(ix, iy, iz)] = processed_image
- if include_lone_images:
- processed_result.images.append(processed_image)
- processed_result.all_prompts.append(processed.prompt)
- processed_result.all_seeds.append(processed.seed)
- processed_result.infotexts.append(processed.infotexts[0])
- except:
- image_cache[index(ix, iy, iz)] = Image.new(cell_mode, cell_size)
if first_axes_processed == 'x':
for ix, x in enumerate(xs):
@@ -283,36 +308,48 @@ def draw_xyz_grid(p, xs, ys, zs, x_labels, y_labels, z_labels, cell, draw_legend
process_cell(x, y, z, ix, iy, iz)
if not processed_result:
+ # Should never happen, I've only seen it on one of four open tabs and it needed to refresh.
+ print("Unexpected error: Processing could not begin, you may need to refresh the tab or restart the service.")
+ return Processed(p, [])
+ elif not any(processed_result.images):
print("Unexpected error: draw_xyz_grid failed to return even a single processed image")
return Processed(p, [])
- sub_grids = [None] * len(zs)
- for i in range(len(zs)):
- start_index = i * len(xs) * len(ys)
+ z_count = len(zs)
+ sub_grids = [None] * z_count
+ for i in range(z_count):
+ start_index = (i * len(xs) * len(ys)) + i
end_index = start_index + len(xs) * len(ys)
- grid = images.image_grid(image_cache[start_index:end_index], rows=len(ys))
+ grid = images.image_grid(processed_result.images[start_index:end_index], rows=len(ys))
if draw_legend:
- grid = images.draw_grid_annotations(grid, cell_size[0], cell_size[1], hor_texts, ver_texts)
- sub_grids[i] = grid
- if include_sub_grids and len(zs) > 1:
- processed_result.images.insert(i+1, grid)
-
- sub_grid_size = sub_grids[0].size
- z_grid = images.image_grid(sub_grids, rows=1)
+ grid = images.draw_grid_annotations(grid, processed_result.images[start_index].size[0], processed_result.images[start_index].size[1], hor_texts, ver_texts, margin_size)
+ processed_result.images.insert(i, grid)
+ processed_result.all_prompts.insert(i, processed_result.all_prompts[start_index])
+ processed_result.all_seeds.insert(i, processed_result.all_seeds[start_index])
+ processed_result.infotexts.insert(i, processed_result.infotexts[start_index])
+
+ sub_grid_size = processed_result.images[0].size
+ z_grid = images.image_grid(processed_result.images[:z_count], rows=1)
if draw_legend:
z_grid = images.draw_grid_annotations(z_grid, sub_grid_size[0], sub_grid_size[1], title_texts, [[images.GridAnnotation()]])
- processed_result.images[0] = z_grid
+ processed_result.images.insert(0, z_grid)
+ #TODO: Deeper aspects of the program rely on grid info being misaligned between metadata arrays, which is not ideal.
+ #processed_result.all_prompts.insert(0, processed_result.all_prompts[0])
+ #processed_result.all_seeds.insert(0, processed_result.all_seeds[0])
+ processed_result.infotexts.insert(0, processed_result.infotexts[0])
- return processed_result, sub_grids
+ return processed_result
class SharedSettingsStackHelper(object):
def __enter__(self):
self.CLIP_stop_at_last_layers = opts.CLIP_stop_at_last_layers
self.vae = opts.sd_vae
+ self.uni_pc_order = opts.uni_pc_order
def __exit__(self, exc_type, exc_value, tb):
opts.data["sd_vae"] = self.vae
+ opts.data["uni_pc_order"] = self.uni_pc_order
modules.sd_models.reload_model_weights()
modules.sd_vae.reload_vae_weights()
@@ -338,75 +375,104 @@ class Script(scripts.Script):
with gr.Row():
x_type = gr.Dropdown(label="X type", choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[1].label, type="index", elem_id=self.elem_id("x_type"))
x_values = gr.Textbox(label="X values", lines=1, elem_id=self.elem_id("x_values"))
+ x_values_dropdown = gr.Dropdown(label="X values",visible=False,multiselect=True,interactive=True)
fill_x_button = ToolButton(value=fill_values_symbol, elem_id="xyz_grid_fill_x_tool_button", visible=False)
with gr.Row():
y_type = gr.Dropdown(label="Y type", choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[0].label, type="index", elem_id=self.elem_id("y_type"))
y_values = gr.Textbox(label="Y values", lines=1, elem_id=self.elem_id("y_values"))
+ y_values_dropdown = gr.Dropdown(label="Y values",visible=False,multiselect=True,interactive=True)
fill_y_button = ToolButton(value=fill_values_symbol, elem_id="xyz_grid_fill_y_tool_button", visible=False)
with gr.Row():
z_type = gr.Dropdown(label="Z type", choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[0].label, type="index", elem_id=self.elem_id("z_type"))
z_values = gr.Textbox(label="Z values", lines=1, elem_id=self.elem_id("z_values"))
+ z_values_dropdown = gr.Dropdown(label="Z values",visible=False,multiselect=True,interactive=True)
fill_z_button = ToolButton(value=fill_values_symbol, elem_id="xyz_grid_fill_z_tool_button", visible=False)
with gr.Row(variant="compact", elem_id="axis_options"):
- draw_legend = gr.Checkbox(label='Draw legend', value=True, elem_id=self.elem_id("draw_legend"))
- include_lone_images = gr.Checkbox(label='Include Sub Images', value=False, elem_id=self.elem_id("include_lone_images"))
- include_sub_grids = gr.Checkbox(label='Include Sub Grids', value=False, elem_id=self.elem_id("include_sub_grids"))
- no_fixed_seeds = gr.Checkbox(label='Keep -1 for seeds', value=False, elem_id=self.elem_id("no_fixed_seeds"))
+ with gr.Column():
+ draw_legend = gr.Checkbox(label='Draw legend', value=True, elem_id=self.elem_id("draw_legend"))
+ no_fixed_seeds = gr.Checkbox(label='Keep -1 for seeds', value=False, elem_id=self.elem_id("no_fixed_seeds"))
+ with gr.Column():
+ include_lone_images = gr.Checkbox(label='Include Sub Images', value=False, elem_id=self.elem_id("include_lone_images"))
+ include_sub_grids = gr.Checkbox(label='Include Sub Grids', value=False, elem_id=self.elem_id("include_sub_grids"))
+ with gr.Column():
+ margin_size = gr.Slider(label="Grid margins (px)", minimum=0, maximum=500, value=0, step=2, elem_id=self.elem_id("margin_size"))
+
+ with gr.Row(variant="compact", elem_id="swap_axes"):
swap_xy_axes_button = gr.Button(value="Swap X/Y axes", elem_id="xy_grid_swap_axes_button")
swap_yz_axes_button = gr.Button(value="Swap Y/Z axes", elem_id="yz_grid_swap_axes_button")
swap_xz_axes_button = gr.Button(value="Swap X/Z axes", elem_id="xz_grid_swap_axes_button")
- def swap_axes(axis1_type, axis1_values, axis2_type, axis2_values):
- return self.current_axis_options[axis2_type].label, axis2_values, self.current_axis_options[axis1_type].label, axis1_values
+ def swap_axes(axis1_type, axis1_values, axis1_values_dropdown, axis2_type, axis2_values, axis2_values_dropdown):
+ return self.current_axis_options[axis2_type].label, axis2_values, axis2_values_dropdown, self.current_axis_options[axis1_type].label, axis1_values, axis1_values_dropdown
- xy_swap_args = [x_type, x_values, y_type, y_values]
+ xy_swap_args = [x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown]
swap_xy_axes_button.click(swap_axes, inputs=xy_swap_args, outputs=xy_swap_args)
- yz_swap_args = [y_type, y_values, z_type, z_values]
+ yz_swap_args = [y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown]
swap_yz_axes_button.click(swap_axes, inputs=yz_swap_args, outputs=yz_swap_args)
- xz_swap_args = [x_type, x_values, z_type, z_values]
+ xz_swap_args = [x_type, x_values, x_values_dropdown, z_type, z_values, z_values_dropdown]
swap_xz_axes_button.click(swap_axes, inputs=xz_swap_args, outputs=xz_swap_args)
def fill(x_type):
axis = self.current_axis_options[x_type]
- return ", ".join(axis.choices()) if axis.choices else gr.update()
-
- fill_x_button.click(fn=fill, inputs=[x_type], outputs=[x_values])
- fill_y_button.click(fn=fill, inputs=[y_type], outputs=[y_values])
- fill_z_button.click(fn=fill, inputs=[z_type], outputs=[z_values])
-