aboutsummaryrefslogtreecommitdiffstats
path: root/swinir.py
diff options
context:
space:
mode:
Diffstat (limited to 'swinir.py')
-rw-r--r--swinir.py74
1 files changed, 74 insertions, 0 deletions
diff --git a/swinir.py b/swinir.py
new file mode 100644
index 00000000..cb2bbe3d
--- /dev/null
+++ b/swinir.py
@@ -0,0 +1,74 @@
+import sys
+import traceback
+import cv2
+from collections import OrderedDict
+import os
+import requests
+from collections import namedtuple
+import numpy as np
+from PIL import Image
+import torch
+import modules.images
+from modules.shared import cmd_opts, opts, device
+from modules.swinir_arch import SwinIR as net
+precision_scope = torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext
+def load_model(task = "realsr", large_model = True, model_path=next(os.listdir(cmd_opts.esrgan_models_path))):
+ if not large_model:
+ # use 'nearest+conv' to avoid block artifacts
+ model = net(upscale=scale, in_chans=3, img_size=64, window_size=8,
+ img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
+ mlp_ratio=2, upsampler='nearest+conv', resi_connection='1conv')
+ else:
+ # larger model size; use '3conv' to save parameters and memory; use ema for GAN training
+ model = net(upscale=scale, in_chans=3, img_size=64, window_size=8,
+ img_range=1., depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], embed_dim=240,
+ num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
+ mlp_ratio=2, upsampler='nearest+conv', resi_connection='3conv')
+
+ pretrained_model = torch.load(model_path)
+ model.load_state_dict(pretrained_model, strict=True)
+
+ return model.half().to(device)
+
+def upscale(img, tile=opts.ESRGAN_tile, tile_overlap=opts.ESRGAN_tile_overlap, window_size = 8, scale = 4):
+ img = cv2.imread(img, cv2.IMREAD_COLOR).astype(np.float16) / 255.
+ model = load_model()
+ with torch.no_grad(), precision_scope("cuda"):
+ _, _, h_old, w_old = img.size()
+ h_pad = (h_old // window_size + 1) * window_size - h_old
+ w_pad = (w_old // window_size + 1) * window_size - w_old
+ img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, :h_old + h_pad, :]
+ img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, :w_old + w_pad]
+ output = inference(img, model, tile, tile_overlap, window_size, scale)
+ output = output[..., :h_old * scale, :w_old * scale]
+ output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
+ if output.ndim == 3:
+ output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) # CHW-RGB to HCW-BGR
+ output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
+ return output
+
+
+def inference(img, model, tile, tile_overlap, window_size, scale):
+ # test the image tile by tile
+ b, c, h, w = img.size()
+ tile = min(tile, h, w)
+ assert tile % window_size == 0, "tile size should be a multiple of window_size"
+ sf = scale
+
+ stride = tile - tile_overlap
+ h_idx_list = list(range(0, h-tile, stride)) + [h-tile]
+ w_idx_list = list(range(0, w-tile, stride)) + [w-tile]
+ E = torch.zeros(b, c, h*sf, w*sf, dtype=torch.half, device=device).type_as(img)
+ W = torch.zeros_like(E, dtype=torch.half, device=device)
+
+ for h_idx in h_idx_list:
+ for w_idx in w_idx_list:
+ in_patch = img[..., h_idx:h_idx+tile, w_idx:w_idx+tile]
+ out_patch = model(in_patch)
+ out_patch_mask = torch.ones_like(out_patch)
+
+ E[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch)
+ W[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch_mask)
+ output = E.div_(W)
+
+ return output \ No newline at end of file