From 370a77f8e78e65a8a1339289d684cb43df142f70 Mon Sep 17 00:00:00 2001 From: Kohaku-Blueleaf <59680068+KohakuBlueleaf@users.noreply.github.com> Date: Tue, 21 Nov 2023 19:59:34 +0800 Subject: Option for using fp16 weight when apply lora --- extensions-builtin/Lora/networks.py | 16 ++++++++++++---- modules/initialize_util.py | 1 + modules/sd_models.py | 14 +++++++++++--- modules/shared_options.py | 1 + 4 files changed, 25 insertions(+), 7 deletions(-) diff --git a/extensions-builtin/Lora/networks.py b/extensions-builtin/Lora/networks.py index 0170dbfb..d22ed843 100644 --- a/extensions-builtin/Lora/networks.py +++ b/extensions-builtin/Lora/networks.py @@ -388,18 +388,26 @@ def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn if module is not None and hasattr(self, 'weight'): try: with torch.no_grad(): - updown, ex_bias = module.calc_updown(self.weight) + if getattr(self, 'fp16_weight', None) is None: + weight = self.weight + bias = self.bias + else: + weight = self.fp16_weight.clone().to(self.weight.device) + bias = getattr(self, 'fp16_bias', None) + if bias is not None: + bias = bias.clone().to(self.bias.device) + updown, ex_bias = module.calc_updown(weight) - if len(self.weight.shape) == 4 and self.weight.shape[1] == 9: + if len(weight.shape) == 4 and weight.shape[1] == 9: # inpainting model. zero pad updown to make channel[1] 4 to 9 updown = torch.nn.functional.pad(updown, (0, 0, 0, 0, 0, 5)) - self.weight.copy_((self.weight.to(dtype=updown.dtype) + updown).to(dtype=self.weight.dtype)) + self.weight.copy_((weight.to(dtype=updown.dtype) + updown).to(dtype=self.weight.dtype)) if ex_bias is not None and hasattr(self, 'bias'): if self.bias is None: self.bias = torch.nn.Parameter(ex_bias).to(self.weight.dtype) else: - self.bias.copy_((self.bias.to(dtype=ex_bias.dtype) + ex_bias).to(dtype=self.bias.dtype)) + self.bias.copy_((bias + ex_bias).to(dtype=self.bias.dtype)) except RuntimeError as e: logging.debug(f"Network {net.name} layer {network_layer_name}: {e}") extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1 diff --git a/modules/initialize_util.py b/modules/initialize_util.py index 1b11ead6..7fb1d8d5 100644 --- a/modules/initialize_util.py +++ b/modules/initialize_util.py @@ -178,6 +178,7 @@ def configure_opts_onchange(): shared.opts.onchange("gradio_theme", shared.reload_gradio_theme) shared.opts.onchange("cross_attention_optimization", wrap_queued_call(lambda: sd_hijack.model_hijack.redo_hijack(shared.sd_model)), call=False) shared.opts.onchange("fp8_storage", wrap_queued_call(lambda: sd_models.reload_model_weights()), call=False) + shared.opts.onchange("cache_fp16_weight", wrap_queued_call(lambda: sd_models.reload_model_weights()), call=False) startup_timer.record("opts onchange") diff --git a/modules/sd_models.py b/modules/sd_models.py index eb491434..0a7777f1 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -413,14 +413,22 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer devices.dtype_unet = torch.float16 timer.record("apply half()") + for module in model.modules(): + if hasattr(module, 'fp16_weight'): + del module.fp16_weight + if hasattr(module, 'fp16_bias'): + del module.fp16_bias + if check_fp8(model): devices.fp8 = True first_stage = model.first_stage_model model.first_stage_model = None for module in model.modules(): - if isinstance(module, torch.nn.Conv2d): - module.to(torch.float8_e4m3fn) - elif isinstance(module, torch.nn.Linear): + if isinstance(module, (torch.nn.Conv2d, torch.nn.Linear)): + if shared.opts.cache_fp16_weight: + module.fp16_weight = module.weight.clone().half() + if module.bias is not None: + module.fp16_bias = module.bias.clone().half() module.to(torch.float8_e4m3fn) model.first_stage_model = first_stage timer.record("apply fp8") diff --git a/modules/shared_options.py b/modules/shared_options.py index d27f35e9..eaa9f135 100644 --- a/modules/shared_options.py +++ b/modules/shared_options.py @@ -201,6 +201,7 @@ options_templates.update(options_section(('optimizations', "Optimizations"), { "persistent_cond_cache": OptionInfo(True, "Persistent cond cache").info("do not recalculate conds from prompts if prompts have not changed since previous calculation"), "batch_cond_uncond": OptionInfo(True, "Batch cond/uncond").info("do both conditional and unconditional denoising in one batch; uses a bit more VRAM during sampling, but improves speed; previously this was controlled by --always-batch-cond-uncond comandline argument"), "fp8_storage": OptionInfo("Disable", "FP8 weight", gr.Dropdown, {"choices": ["Disable", "Enable for SDXL", "Enable"]}).info("Use FP8 to store Linear/Conv layers' weight. Require pytorch>=2.1.0."), + "cache_fp16_weight": OptionInfo(False, "Cache FP16 weight for LoRA").info("Cache fp16 weight when enabling FP8, will increase the quality of LoRA. Use more system ram."), })) options_templates.update(options_section(('compatibility', "Compatibility"), { -- cgit v1.2.3