From 843b2b64fcd41be4a9e934ba83a3a499c7aff5c0 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 12 Sep 2022 18:40:06 +0300 Subject: Instance of CUDA out of memory on a low-res batch, even with --opt-split-attention-v1 (found cause) #255 --- modules/codeformer_model.py | 32 ++++++++++++++++++-------------- 1 file changed, 18 insertions(+), 14 deletions(-) (limited to 'modules/codeformer_model.py') diff --git a/modules/codeformer_model.py b/modules/codeformer_model.py index 946b4a30..fd1da692 100644 --- a/modules/codeformer_model.py +++ b/modules/codeformer_model.py @@ -5,7 +5,7 @@ import traceback import cv2 import torch -from modules import shared +from modules import shared, devices from modules.paths import script_path import modules.shared import modules.face_restoration @@ -51,6 +51,7 @@ def setup_codeformer(): def create_models(self): if self.net is not None and self.face_helper is not None: + self.net.to(shared.device) return self.net, self.face_helper net = net_class(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, connect_list=['32', '64', '128', '256']).to(shared.device) @@ -61,9 +62,9 @@ def setup_codeformer(): face_helper = FaceRestoreHelper(1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', use_parse=True, device=shared.device) - if not cmd_opts.unload_gfpgan: - self.net = net - self.face_helper = face_helper + self.net = net + self.face_helper = face_helper + self.net.to(shared.device) return net, face_helper @@ -72,20 +73,20 @@ def setup_codeformer(): original_resolution = np_image.shape[0:2] - net, face_helper = self.create_models() - face_helper.clean_all() - face_helper.read_image(np_image) - face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5) - face_helper.align_warp_face() + self.create_models() + self.face_helper.clean_all() + self.face_helper.read_image(np_image) + self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5) + self.face_helper.align_warp_face() - for idx, cropped_face in enumerate(face_helper.cropped_faces): + for idx, cropped_face in enumerate(self.face_helper.cropped_faces): cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) cropped_face_t = cropped_face_t.unsqueeze(0).to(shared.device) try: with torch.no_grad(): - output = net(cropped_face_t, w=w if w is not None else shared.opts.code_former_weight, adain=True)[0] + output = self.net(cropped_face_t, w=w if w is not None else shared.opts.code_former_weight, adain=True)[0] restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) del output torch.cuda.empty_cache() @@ -94,16 +95,19 @@ def setup_codeformer(): restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1)) restored_face = restored_face.astype('uint8') - face_helper.add_restored_face(restored_face) + self.face_helper.add_restored_face(restored_face) - face_helper.get_inverse_affine(None) + self.face_helper.get_inverse_affine(None) - restored_img = face_helper.paste_faces_to_input_image() + restored_img = self.face_helper.paste_faces_to_input_image() restored_img = restored_img[:, :, ::-1] if original_resolution != restored_img.shape[0:2]: restored_img = cv2.resize(restored_img, (0, 0), fx=original_resolution[1]/restored_img.shape[1], fy=original_resolution[0]/restored_img.shape[0], interpolation=cv2.INTER_LINEAR) + if shared.opts.face_restoration_unload: + self.net.to(devices.cpu) + return restored_img global have_codeformer -- cgit v1.2.3