From 683287d87f6401083a8d63eedc00ca7410214ca1 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Fri, 6 Jan 2023 08:52:06 +0300 Subject: rework saving training params to file #6372 --- modules/hypernetworks/hypernetwork.py | 28 +++++++--------------------- 1 file changed, 7 insertions(+), 21 deletions(-) (limited to 'modules/hypernetworks/hypernetwork.py') diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 3237c37a..b0cfbe71 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -13,7 +13,7 @@ import tqdm from einops import rearrange, repeat from ldm.util import default from modules import devices, processing, sd_models, shared, sd_samplers -from modules.textual_inversion import textual_inversion +from modules.textual_inversion import textual_inversion, logging from modules.textual_inversion.learn_schedule import LearnRateScheduler from torch import einsum from torch.nn.init import normal_, xavier_normal_, xavier_uniform_, kaiming_normal_, kaiming_uniform_, zeros_ @@ -401,25 +401,7 @@ def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, hypernet.save(fn) shared.reload_hypernetworks() -# Note: textual_inversion.py has a nearly identical function of the same name. -def save_settings_to_file(model_name, model_hash, initial_step, num_of_dataset_images, hypernetwork_name, layer_structure, activation_func, weight_init, add_layer_norm, use_dropout, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): - # Starting index of preview-related arguments. - border_index = 21 - # Get a list of the argument names. - arg_names = inspect.getfullargspec(save_settings_to_file).args - # Create a list of the argument names to include in the settings string. - names = arg_names[:border_index] # Include all arguments up until the preview-related ones. - if preview_from_txt2img: - names.extend(arg_names[border_index:]) # Include preview-related arguments if applicable. - # Build the settings string. - settings_str = "datetime : " + datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") + "\n" - for name in names: - if name != 'log_directory': # It's useless and redundant to save log_directory. - value = locals()[name] - settings_str += f"{name}: {value}\n" - # Create or append to the file. - with open(os.path.join(log_directory, 'settings.txt'), "a+") as fout: - fout.write(settings_str + "\n\n") + def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): # images allows training previews to have infotext. Importing it at the top causes a circular import problem. @@ -477,7 +459,11 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step, ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method) if shared.opts.save_training_settings_to_txt: - save_settings_to_file(checkpoint.model_name, '[{}]'.format(checkpoint.hash), initial_step, len(ds), hypernetwork_name, hypernetwork.layer_structure, hypernetwork.activation_func, hypernetwork.weight_init, hypernetwork.add_layer_norm, hypernetwork.use_dropout, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height) + saved_params = dict( + model_name=checkpoint.model_name, model_hash=checkpoint.hash, num_of_dataset_images=len(ds), + **{field: getattr(hypernetwork, field) for field in ['layer_structure', 'activation_func', 'weight_init', 'add_layer_norm', 'use_dropout', ]} + ) + logging.save_settings_to_file(log_directory, {**saved_params, **locals()}) latent_sampling_method = ds.latent_sampling_method -- cgit v1.2.3