From 8fb9c57ed62dcef721d50c1eeb9c20f65c509215 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sun, 11 Sep 2022 23:24:24 +0300 Subject: add half() supporrt for CLIP interrogation --- modules/interrogate.py | 41 ++++++++++++++++++++++++----------------- 1 file changed, 24 insertions(+), 17 deletions(-) (limited to 'modules/interrogate.py') diff --git a/modules/interrogate.py b/modules/interrogate.py index ed97a58b..7ebb79fc 100644 --- a/modules/interrogate.py +++ b/modules/interrogate.py @@ -1,3 +1,4 @@ +import contextlib import os import sys import traceback @@ -6,7 +7,6 @@ import re import torch -from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode @@ -26,6 +26,7 @@ class InterrogateModels: clip_model = None clip_preprocess = None categories = None + dtype = None def __init__(self, content_dir): self.categories = [] @@ -60,14 +61,20 @@ class InterrogateModels: def load(self): if self.blip_model is None: self.blip_model = self.load_blip_model() + if not shared.cmd_opts.no_half: + self.blip_model = self.blip_model.half() self.blip_model = self.blip_model.to(shared.device) if self.clip_model is None: self.clip_model, self.clip_preprocess = self.load_clip_model() + if not shared.cmd_opts.no_half: + self.clip_model = self.clip_model.half() self.clip_model = self.clip_model.to(shared.device) + self.dtype = next(self.clip_model.parameters()).dtype + def unload(self): if not shared.opts.interrogate_keep_models_in_memory: if self.clip_model is not None: @@ -76,14 +83,14 @@ class InterrogateModels: if self.blip_model is not None: self.blip_model = self.blip_model.to(devices.cpu) + devices.torch_gc() def rank(self, image_features, text_array, top_count=1): import clip top_count = min(top_count, len(text_array)) - text_tokens = clip.tokenize([text for text in text_array]).cuda() - with torch.no_grad(): - text_features = self.clip_model.encode_text(text_tokens).float() + text_tokens = clip.tokenize([text for text in text_array]).to(shared.device) + text_features = self.clip_model.encode_text(text_tokens).type(self.dtype) text_features /= text_features.norm(dim=-1, keepdim=True) similarity = torch.zeros((1, len(text_array))).to(shared.device) @@ -94,13 +101,12 @@ class InterrogateModels: top_probs, top_labels = similarity.cpu().topk(top_count, dim=-1) return [(text_array[top_labels[0][i].numpy()], (top_probs[0][i].numpy()*100)) for i in range(top_count)] - def generate_caption(self, pil_image): gpu_image = transforms.Compose([ transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) - ])(pil_image).unsqueeze(0).to(shared.device) + ])(pil_image).unsqueeze(0).type(self.dtype).to(shared.device) with torch.no_grad(): caption = self.blip_model.generate(gpu_image, sample=False, num_beams=shared.opts.interrogate_clip_num_beams, min_length=shared.opts.interrogate_clip_min_length, max_length=shared.opts.interrogate_clip_max_length) @@ -116,22 +122,23 @@ class InterrogateModels: caption = self.generate_caption(pil_image) res = caption - images = self.clip_preprocess(pil_image).unsqueeze(0).to(shared.device) + images = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(shared.device) - with torch.no_grad(): - image_features = self.clip_model.encode_image(images).float() + precision_scope = torch.autocast if shared.cmd_opts.precision == "autocast" else contextlib.nullcontext + with torch.no_grad(), precision_scope("cuda"): + image_features = self.clip_model.encode_image(images).type(self.dtype) - image_features /= image_features.norm(dim=-1, keepdim=True) + image_features /= image_features.norm(dim=-1, keepdim=True) - if shared.opts.interrogate_use_builtin_artists: - artist = self.rank(image_features, ["by " + artist.name for artist in shared.artist_db.artists])[0] + if shared.opts.interrogate_use_builtin_artists: + artist = self.rank(image_features, ["by " + artist.name for artist in shared.artist_db.artists])[0] - res += ", " + artist[0] + res += ", " + artist[0] - for name, topn, items in self.categories: - matches = self.rank(image_features, items, top_count=topn) - for match, score in matches: - res += ", " + match + for name, topn, items in self.categories: + matches = self.rank(image_features, items, top_count=topn) + for match, score in matches: + res += ", " + match except Exception: print(f"Error interrogating", file=sys.stderr) -- cgit v1.2.3