From f194457229e4537912467bc60ac3a873f473a63c Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sun, 11 Sep 2022 18:48:36 +0300 Subject: CLIP interrogator --- modules/interrogate.py | 142 +++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 142 insertions(+) create mode 100644 modules/interrogate.py (limited to 'modules/interrogate.py') diff --git a/modules/interrogate.py b/modules/interrogate.py new file mode 100644 index 00000000..ed97a58b --- /dev/null +++ b/modules/interrogate.py @@ -0,0 +1,142 @@ +import os +import sys +import traceback +from collections import namedtuple +import re + +import torch + +from PIL import Image +from torchvision import transforms +from torchvision.transforms.functional import InterpolationMode + +import modules.shared as shared +from modules import devices, paths + +blip_image_eval_size = 384 +blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth' +clip_model_name = 'ViT-L/14' + +Category = namedtuple("Category", ["name", "topn", "items"]) + +re_topn = re.compile(r"\.top(\d+)\.") + +class InterrogateModels: + blip_model = None + clip_model = None + clip_preprocess = None + categories = None + + def __init__(self, content_dir): + self.categories = [] + + if os.path.exists(content_dir): + for filename in os.listdir(content_dir): + m = re_topn.search(filename) + topn = 1 if m is None else int(m.group(1)) + + with open(os.path.join(content_dir, filename), "r", encoding="utf8") as file: + lines = [x.strip() for x in file.readlines()] + + self.categories.append(Category(name=filename, topn=topn, items=lines)) + + def load_blip_model(self): + import models.blip + + blip_model = models.blip.blip_decoder(pretrained=blip_model_url, image_size=blip_image_eval_size, vit='base', med_config=os.path.join(paths.paths["BLIP"], "configs", "med_config.json")) + blip_model.eval() + + return blip_model + + def load_clip_model(self): + import clip + + model, preprocess = clip.load(clip_model_name) + model.eval() + model = model.to(shared.device) + + return model, preprocess + + def load(self): + if self.blip_model is None: + self.blip_model = self.load_blip_model() + + self.blip_model = self.blip_model.to(shared.device) + + if self.clip_model is None: + self.clip_model, self.clip_preprocess = self.load_clip_model() + + self.clip_model = self.clip_model.to(shared.device) + + def unload(self): + if not shared.opts.interrogate_keep_models_in_memory: + if self.clip_model is not None: + self.clip_model = self.clip_model.to(devices.cpu) + + if self.blip_model is not None: + self.blip_model = self.blip_model.to(devices.cpu) + + + def rank(self, image_features, text_array, top_count=1): + import clip + + top_count = min(top_count, len(text_array)) + text_tokens = clip.tokenize([text for text in text_array]).cuda() + with torch.no_grad(): + text_features = self.clip_model.encode_text(text_tokens).float() + text_features /= text_features.norm(dim=-1, keepdim=True) + + similarity = torch.zeros((1, len(text_array))).to(shared.device) + for i in range(image_features.shape[0]): + similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1) + similarity /= image_features.shape[0] + + top_probs, top_labels = similarity.cpu().topk(top_count, dim=-1) + return [(text_array[top_labels[0][i].numpy()], (top_probs[0][i].numpy()*100)) for i in range(top_count)] + + + def generate_caption(self, pil_image): + gpu_image = transforms.Compose([ + transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC), + transforms.ToTensor(), + transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) + ])(pil_image).unsqueeze(0).to(shared.device) + + with torch.no_grad(): + caption = self.blip_model.generate(gpu_image, sample=False, num_beams=shared.opts.interrogate_clip_num_beams, min_length=shared.opts.interrogate_clip_min_length, max_length=shared.opts.interrogate_clip_max_length) + + return caption[0] + + def interrogate(self, pil_image): + res = None + + try: + self.load() + + caption = self.generate_caption(pil_image) + res = caption + + images = self.clip_preprocess(pil_image).unsqueeze(0).to(shared.device) + + with torch.no_grad(): + image_features = self.clip_model.encode_image(images).float() + + image_features /= image_features.norm(dim=-1, keepdim=True) + + if shared.opts.interrogate_use_builtin_artists: + artist = self.rank(image_features, ["by " + artist.name for artist in shared.artist_db.artists])[0] + + res += ", " + artist[0] + + for name, topn, items in self.categories: + matches = self.rank(image_features, items, top_count=topn) + for match, score in matches: + res += ", " + match + + except Exception: + print(f"Error interrogating", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) + + self.unload() + + return res -- cgit v1.2.3