From d25219b7e889cf34bccae9cb88497708796efda2 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 10 May 2023 11:55:09 +0300 Subject: manual fixes for some C408 --- modules/models/diffusion/ddpm_edit.py | 8 ++++---- modules/models/diffusion/uni_pc/uni_pc.py | 4 ++-- 2 files changed, 6 insertions(+), 6 deletions(-) (limited to 'modules/models') diff --git a/modules/models/diffusion/ddpm_edit.py b/modules/models/diffusion/ddpm_edit.py index af4dea15..3fb76b65 100644 --- a/modules/models/diffusion/ddpm_edit.py +++ b/modules/models/diffusion/ddpm_edit.py @@ -405,7 +405,7 @@ class DDPM(pl.LightningModule): @torch.no_grad() def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs): - log = dict() + log = {} x = self.get_input(batch, self.first_stage_key) N = min(x.shape[0], N) n_row = min(x.shape[0], n_row) @@ -413,7 +413,7 @@ class DDPM(pl.LightningModule): log["inputs"] = x # get diffusion row - diffusion_row = list() + diffusion_row = [] x_start = x[:n_row] for t in range(self.num_timesteps): @@ -1263,7 +1263,7 @@ class LatentDiffusion(DDPM): use_ddim = False - log = dict() + log = {} z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, return_first_stage_outputs=True, force_c_encode=True, @@ -1291,7 +1291,7 @@ class LatentDiffusion(DDPM): if plot_diffusion_rows: # get diffusion row - diffusion_row = list() + diffusion_row = [] z_start = z[:n_row] for t in range(self.num_timesteps): if t % self.log_every_t == 0 or t == self.num_timesteps - 1: diff --git a/modules/models/diffusion/uni_pc/uni_pc.py b/modules/models/diffusion/uni_pc/uni_pc.py index 6f8ad631..f6c49f87 100644 --- a/modules/models/diffusion/uni_pc/uni_pc.py +++ b/modules/models/diffusion/uni_pc/uni_pc.py @@ -344,7 +344,7 @@ def model_wrapper( t_in = torch.cat([t_continuous] * 2) if isinstance(condition, dict): assert isinstance(unconditional_condition, dict) - c_in = dict() + c_in = {} for k in condition: if isinstance(condition[k], list): c_in[k] = [torch.cat([ @@ -355,7 +355,7 @@ def model_wrapper( unconditional_condition[k], condition[k]]) elif isinstance(condition, list): - c_in = list() + c_in = [] assert isinstance(unconditional_condition, list) for i in range(len(condition)): c_in.append(torch.cat([unconditional_condition[i], condition[i]])) -- cgit v1.2.3