From cd48308a2a37b1e838b1b0cc5e8e507a174b14fb Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Mon, 28 Aug 2023 22:22:35 +0300 Subject: always show NV as RNG source in infotext --- modules/processing.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 7dc931ba..0138e5ac 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -689,7 +689,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter "Token merging ratio": None if token_merging_ratio == 0 else token_merging_ratio, "Token merging ratio hr": None if not enable_hr or token_merging_ratio_hr == 0 else token_merging_ratio_hr, "Init image hash": getattr(p, 'init_img_hash', None), - "RNG": opts.randn_source if opts.randn_source != "GPU" and opts.randn_source != "NV" else None, + "RNG": opts.randn_source if opts.randn_source != "GPU" else None, "NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond, "Tiling": "True" if p.tiling else None, **p.extra_generation_params, -- cgit v1.2.3 From ae0b2cc1964486ba847290ad752d9a284b6d63ba Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Wed, 30 Aug 2023 18:22:50 +0300 Subject: add an option to choose how to combine hires fix and refiner --- modules/processing.py | 18 ++++++------------ 1 file changed, 6 insertions(+), 12 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 0138e5ac..f696e925 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -1148,18 +1148,12 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): else: decoded_samples = None - current = shared.sd_model.sd_checkpoint_info - try: - if self.hr_checkpoint_info is not None: - self.sampler = None - sd_models.reload_model_weights(info=self.hr_checkpoint_info) - devices.torch_gc() - - return self.sample_hr_pass(samples, decoded_samples, seeds, subseeds, subseed_strength, prompts) - finally: - self.sampler = None - sd_models.reload_model_weights(info=current) - devices.torch_gc() + with sd_models.SkipWritingToConfig(): + sd_models.reload_model_weights(info=self.hr_checkpoint_info) + + devices.torch_gc() + + return self.sample_hr_pass(samples, decoded_samples, seeds, subseeds, subseed_strength, prompts) def sample_hr_pass(self, samples, decoded_samples, seeds, subseeds, subseed_strength, prompts): if shared.state.interrupted: -- cgit v1.2.3 From 6adf2b71c2c89f84d4aee1e230276dcd1a3fab62 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Wed, 30 Aug 2023 19:08:04 +0300 Subject: fix inpainting models in txt2img creating black pictures --- modules/processing.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index f696e925..e08b6305 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -91,8 +91,8 @@ def create_binary_mask(image): def txt2img_image_conditioning(sd_model, x, width, height): if sd_model.model.conditioning_key in {'hybrid', 'concat'}: # Inpainting models - # The "masked-image" in this case will just be all zeros since the entire image is masked. - image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device) + # The "masked-image" in this case will just be all 0.5 since the entire image is masked. + image_conditioning = torch.ones(x.shape[0], 3, height, width, device=x.device) * 0.5 image_conditioning = images_tensor_to_samples(image_conditioning, approximation_indexes.get(opts.sd_vae_encode_method)) # Add the fake full 1s mask to the first dimension. -- cgit v1.2.3 From f11eec81e31bfc9195bbacda13b2a3ce7b98fd92 Mon Sep 17 00:00:00 2001 From: ibrainventures Date: Thu, 7 Sep 2023 23:19:52 +0200 Subject: (feat) Include Program Version in info response. Update processing.py This would help to organize / memorize the program version for the creation process. (as it is also unformated included inside the infotext). --- modules/processing.py | 2 ++ 1 file changed, 2 insertions(+) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index e124e7f0..0c191428 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -533,6 +533,7 @@ class Processed: self.all_seeds = all_seeds or p.all_seeds or [self.seed] self.all_subseeds = all_subseeds or p.all_subseeds or [self.subseed] self.infotexts = infotexts or [info] + self.version = program_version() def js(self): obj = { @@ -567,6 +568,7 @@ class Processed: "job_timestamp": self.job_timestamp, "clip_skip": self.clip_skip, "is_using_inpainting_conditioning": self.is_using_inpainting_conditioning, + "version": self.version, } return json.dumps(obj) -- cgit v1.2.3 From ab5741717546758c57cf6c2a040645ec2b44690a Mon Sep 17 00:00:00 2001 From: w-e-w <40751091+w-e-w@users.noreply.github.com> Date: Sat, 9 Sep 2023 22:35:50 +0900 Subject: prevent accessing non-existing keys --- modules/processing.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 0c191428..618f8abe 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -711,7 +711,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed: if p.scripts is not None: p.scripts.before_process(p) - stored_opts = {k: opts.data[k] for k in p.override_settings.keys()} + stored_opts = {k: opts.data[k] for k in p.override_settings.keys() if k in opts.data} try: # if no checkpoint override or the override checkpoint can't be found, remove override entry and load opts checkpoint -- cgit v1.2.3 From 3f763d41e8ff7f09f89adb00eec440f18566d260 Mon Sep 17 00:00:00 2001 From: missionfloyd Date: Sun, 1 Oct 2023 22:38:27 -0600 Subject: Change denoising_strength default to None. --- modules/processing.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index e124e7f0..061d9955 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -142,7 +142,7 @@ class StableDiffusionProcessing: overlay_images: list = None eta: float = None do_not_reload_embeddings: bool = False - denoising_strength: float = 0 + denoising_strength: float = None ddim_discretize: str = None s_min_uncond: float = None s_churn: float = None -- cgit v1.2.3 From 9821625a76177ebc8b62a1ee6d8ef39cf4805f99 Mon Sep 17 00:00:00 2001 From: Leon Date: Mon, 9 Oct 2023 18:36:48 +0800 Subject: fix the key error exception when adding an overwriting key which is defined in the extensions --- modules/processing.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 36bc94f7..fee2440f 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -711,7 +711,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed: if p.scripts is not None: p.scripts.before_process(p) - stored_opts = {k: opts.data[k] for k in p.override_settings.keys() if k in opts.data} + stored_opts = {k: opts.data[k] if k in opts.data else opts.get_default(k) for k in p.override_settings.keys() if k in opts.data} try: # if no checkpoint override or the override checkpoint can't be found, remove override entry and load opts checkpoint -- cgit v1.2.3 From fbc8d213546047d8970b92809e15b33e8a1301be Mon Sep 17 00:00:00 2001 From: Won-Kyu Park Date: Sat, 14 Oct 2023 02:39:04 +0900 Subject: fix IndexError: list index out of range error interrupted while postprocess --- modules/processing.py | 1 + 1 file changed, 1 insertion(+) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 36bc94f7..df037fb0 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -820,6 +820,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: state.skipped = False if state.interrupted: + infotexts.append(Processed(p, []).infotext(p, 0)) break sd_models.reload_model_weights() # model can be changed for example by refiner -- cgit v1.2.3 From a109c7aeb8871fe0ae201794f140f8f2e9b5c3ac Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Sat, 14 Oct 2023 07:49:03 +0300 Subject: more general case of adding an infotext when no images have been generated --- modules/processing.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index df037fb0..816f5fc7 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -820,7 +820,6 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: state.skipped = False if state.interrupted: - infotexts.append(Processed(p, []).infotext(p, 0)) break sd_models.reload_model_weights() # model can be changed for example by refiner @@ -961,6 +960,9 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: state.nextjob() + if not infotexts: + infotexts.append(Processed(p, []).infotext(p, 0)) + p.color_corrections = None index_of_first_image = 0 -- cgit v1.2.3 From 5121846d34d74aee9b55d48d35c1559a710051b0 Mon Sep 17 00:00:00 2001 From: Won-Kyu Park Date: Wed, 25 Oct 2023 21:37:55 +0900 Subject: call state.jobnext() before postproces*() --- modules/processing.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 40598f5c..70ad1ebe 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -886,6 +886,8 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: devices.torch_gc() + state.nextjob() + if p.scripts is not None: p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n) @@ -958,8 +960,6 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: devices.torch_gc() - state.nextjob() - if not infotexts: infotexts.append(Processed(p, []).infotext(p, 0)) -- cgit v1.2.3 From 5e80d9ee99c5899e5e2b130408ffb65a0585a62a Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Tue, 7 Nov 2023 11:33:16 +0300 Subject: fix pix2pix producing bad results --- modules/processing.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 70ad1ebe..b0e240a4 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -296,7 +296,7 @@ class StableDiffusionProcessing: return conditioning def edit_image_conditioning(self, source_image): - conditioning_image = images_tensor_to_samples(source_image*0.5+0.5, approximation_indexes.get(opts.sd_vae_encode_method)) + conditioning_image = shared.sd_model.encode_first_stage(source_image).mode() return conditioning_image -- cgit v1.2.3 From 294f8a514f982248cda1cafda30d35566f3a0321 Mon Sep 17 00:00:00 2001 From: aria1th <35677394+aria1th@users.noreply.github.com> Date: Sat, 11 Nov 2023 23:28:12 +0900 Subject: add hyperTile https://github.com/tfernd/HyperTile --- modules/processing.py | 27 ++++++++++++++++++++++++--- 1 file changed, 24 insertions(+), 3 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index b0e240a4..e2309534 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -799,6 +799,16 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: infotexts = [] output_images = [] + unet_object = p.sd_model.model + vae_model = p.sd_model.first_stage_model + try: + from hyper_tile import split_attention, flush + except (ImportError, ModuleNotFoundError): # pip install git+https://github.com/tfernd/HyperTile@2ef64b2800d007d305755c33550537410310d7df + split_attention = lambda *args, **kwargs: lambda x: x # return a no-op context manager + flush = lambda: None + import random + saved_rng_state = random.getstate() + random.seed(p.seed) # hyper_tile uses random, so we need to seed it with torch.no_grad(), p.sd_model.ema_scope(): with devices.autocast(): @@ -866,15 +876,25 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: shared.state.job = f"Batch {n+1} out of {p.n_iter}" with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast(): - samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts) + # get largest tile size available, which is 2^x which is factor of gcd of p.width and p.height + gcd = math.gcd(p.width, p.height) + largest_tile_size_available = 1 + while gcd % (largest_tile_size_available * 2) == 0: + largest_tile_size_available *= 2 + aspect_ratio = p.width / p.height + with split_attention(vae_model, aspect_ratio=aspect_ratio, tile_size=min(largest_tile_size_available, 128), disable=not shared.opts.hypertile_split_vae_attn): + with split_attention(unet_object, aspect_ratio=aspect_ratio, tile_size=min(largest_tile_size_available, 256), swap_size=2, disable=not shared.opts.hypertile_split_unet_attn): + flush() + samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts) if getattr(samples_ddim, 'already_decoded', False): x_samples_ddim = samples_ddim else: if opts.sd_vae_decode_method != 'Full': p.extra_generation_params['VAE Decoder'] = opts.sd_vae_decode_method - - x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True) + with split_attention(vae_model, aspect_ratio=aspect_ratio, tile_size=min(largest_tile_size_available, 128), disable=not shared.opts.hypertile_split_vae_attn): + flush() + x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True) x_samples_ddim = torch.stack(x_samples_ddim).float() x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) @@ -980,6 +1000,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: if opts.grid_save: images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(use_main_prompt=True), short_filename=not opts.grid_extended_filename, p=p, grid=True) + random.setstate(saved_rng_state) if not p.disable_extra_networks and p.extra_network_data: extra_networks.deactivate(p, p.extra_network_data) -- cgit v1.2.3 From b29fc6d4de8812b25c520a46676cda13c3fe64ca Mon Sep 17 00:00:00 2001 From: aria1th <35677394+aria1th@users.noreply.github.com> Date: Sat, 11 Nov 2023 23:43:13 +0900 Subject: Implement Hypertile Co-Authored-By: Kieran Hunt --- modules/processing.py | 65 ++++++++++++++++++++------------------------------- 1 file changed, 25 insertions(+), 40 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index e2309534..e19a09a3 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -24,6 +24,7 @@ from modules.shared import opts, cmd_opts, state import modules.shared as shared import modules.paths as paths import modules.face_restoration +from modules.hypertile import split_attention, set_hypertile_seed, largest_tile_size_available import modules.images as images import modules.styles import modules.sd_models as sd_models @@ -799,17 +800,6 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: infotexts = [] output_images = [] - unet_object = p.sd_model.model - vae_model = p.sd_model.first_stage_model - try: - from hyper_tile import split_attention, flush - except (ImportError, ModuleNotFoundError): # pip install git+https://github.com/tfernd/HyperTile@2ef64b2800d007d305755c33550537410310d7df - split_attention = lambda *args, **kwargs: lambda x: x # return a no-op context manager - flush = lambda: None - import random - saved_rng_state = random.getstate() - random.seed(p.seed) # hyper_tile uses random, so we need to seed it - with torch.no_grad(), p.sd_model.ema_scope(): with devices.autocast(): p.init(p.all_prompts, p.all_seeds, p.all_subseeds) @@ -871,29 +861,20 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: p.comment(comment) p.extra_generation_params.update(model_hijack.extra_generation_params) - + set_hypertile_seed(p.seed) + # add batch size + hypertile status to information to reproduce the run if p.n_iter > 1: shared.state.job = f"Batch {n+1} out of {p.n_iter}" with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast(): - # get largest tile size available, which is 2^x which is factor of gcd of p.width and p.height - gcd = math.gcd(p.width, p.height) - largest_tile_size_available = 1 - while gcd % (largest_tile_size_available * 2) == 0: - largest_tile_size_available *= 2 - aspect_ratio = p.width / p.height - with split_attention(vae_model, aspect_ratio=aspect_ratio, tile_size=min(largest_tile_size_available, 128), disable=not shared.opts.hypertile_split_vae_attn): - with split_attention(unet_object, aspect_ratio=aspect_ratio, tile_size=min(largest_tile_size_available, 256), swap_size=2, disable=not shared.opts.hypertile_split_unet_attn): - flush() - samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts) + samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts) if getattr(samples_ddim, 'already_decoded', False): x_samples_ddim = samples_ddim else: if opts.sd_vae_decode_method != 'Full': p.extra_generation_params['VAE Decoder'] = opts.sd_vae_decode_method - with split_attention(vae_model, aspect_ratio=aspect_ratio, tile_size=min(largest_tile_size_available, 128), disable=not shared.opts.hypertile_split_vae_attn): - flush() + with split_attention(p.sd_model.first_stage_model, aspect_ratio = p.width / p.height, tile_size=min(largest_tile_size_available(p.width, p.height), 128), disable=not shared.opts.hypertile_split_vae_attn, is_sdxl=shared.sd_model.is_sdxl): x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True) x_samples_ddim = torch.stack(x_samples_ddim).float() @@ -1000,7 +981,6 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: if opts.grid_save: images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(use_main_prompt=True), short_filename=not opts.grid_extended_filename, p=p, grid=True) - random.setstate(saved_rng_state) if not p.disable_extra_networks and p.extra_network_data: extra_networks.deactivate(p, p.extra_network_data) @@ -1161,24 +1141,25 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts): self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model) - + aspect_ratio = self.width / self.height x = self.rng.next() - samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x)) + tile_size = largest_tile_size_available(self.width, self.height) + with split_attention(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=min(tile_size, 128), swap_size=1, disable=not shared.opts.hypertile_split_vae_attn, is_sdxl=shared.sd_model.is_sdxl): + with split_attention(self.sd_model.model, aspect_ratio=aspect_ratio, tile_size=min(tile_size, 256), swap_size=2, disable=not shared.opts.hypertile_split_unet_attn, is_sdxl=shared.sd_model.is_sdxl): + devices.torch_gc() + samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x)) del x - if not self.enable_hr: return samples if self.latent_scale_mode is None: - decoded_samples = torch.stack(decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)).to(dtype=torch.float32) + with split_attention(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=min(tile_size, 256), swap_size=1, disable=not shared.opts.hypertile_split_vae_attn, is_sdxl=shared.sd_model.is_sdxl): + decoded_samples = torch.stack(decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)).to(dtype=torch.float32) else: decoded_samples = None with sd_models.SkipWritingToConfig(): sd_models.reload_model_weights(info=self.hr_checkpoint_info) - - devices.torch_gc() - return self.sample_hr_pass(samples, decoded_samples, seeds, subseeds, subseed_strength, prompts) def sample_hr_pass(self, samples, decoded_samples, seeds, subseeds, subseed_strength, prompts): @@ -1186,7 +1167,6 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): return samples self.is_hr_pass = True - target_width = self.hr_upscale_to_x target_height = self.hr_upscale_to_y @@ -1264,18 +1244,19 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): if self.scripts is not None: self.scripts.before_hr(self) - - samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning) + tile_size = largest_tile_size_available(target_width, target_height) + with split_attention(self.sd_model.first_stage_model, aspect_ratio=target_width / target_height, tile_size=min(tile_size, 256), swap_size=1, disable=not opts.hypertile_split_vae_attn, is_sdxl=shared.sd_model.is_sdxl): + with split_attention(self.sd_model.model, aspect_ratio=target_width / target_height, tile_size=min(tile_size, 256), swap_size=3, max_depth=1,scale_depth=True, disable=not opts.hypertile_split_unet_attn, is_sdxl=shared.sd_model.is_sdxl): + samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning) sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio()) self.sampler = None devices.torch_gc() - - decoded_samples = decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True) + with split_attention(self.sd_model.first_stage_model, aspect_ratio=target_width / target_height, tile_size=min(tile_size, 256), swap_size=1, disable=not opts.hypertile_split_vae_attn, is_sdxl=shared.sd_model.is_sdxl): + decoded_samples = decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True) self.is_hr_pass = False - return decoded_samples def close(self): @@ -1550,8 +1531,12 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): if self.initial_noise_multiplier != 1.0: self.extra_generation_params["Noise multiplier"] = self.initial_noise_multiplier x *= self.initial_noise_multiplier - - samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning) + aspect_ratio = self.width / self.height + tile_size = largest_tile_size_available(self.width, self.height) + with split_attention(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=min(tile_size, 128), swap_size=1, disable=not shared.opts.hypertile_split_vae_attn, is_sdxl=shared.sd_model.is_sdxl): + with split_attention(self.sd_model.model, aspect_ratio=aspect_ratio, tile_size=min(tile_size, 256), swap_size=2, disable=not shared.opts.hypertile_split_unet_attn, is_sdxl=shared.sd_model.is_sdxl): + devices.torch_gc() + samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning) if self.mask is not None: samples = samples * self.nmask + self.init_latent * self.mask -- cgit v1.2.3 From bcfaf3979a9f93e37c418b58c75b02d9570b4354 Mon Sep 17 00:00:00 2001 From: AngelBottomless Date: Thu, 16 Nov 2023 18:43:16 +0900 Subject: convert/add hypertile options --- modules/processing.py | 21 +++++++++++---------- 1 file changed, 11 insertions(+), 10 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index e19a09a3..c622ff33 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -24,7 +24,7 @@ from modules.shared import opts, cmd_opts, state import modules.shared as shared import modules.paths as paths import modules.face_restoration -from modules.hypertile import split_attention, set_hypertile_seed, largest_tile_size_available +from modules.hypertile import set_hypertile_seed, largest_tile_size_available, hypertile_context_unet, hypertile_context_vae import modules.images as images import modules.styles import modules.sd_models as sd_models @@ -874,7 +874,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: else: if opts.sd_vae_decode_method != 'Full': p.extra_generation_params['VAE Decoder'] = opts.sd_vae_decode_method - with split_attention(p.sd_model.first_stage_model, aspect_ratio = p.width / p.height, tile_size=min(largest_tile_size_available(p.width, p.height), 128), disable=not shared.opts.hypertile_split_vae_attn, is_sdxl=shared.sd_model.is_sdxl): + with hypertile_context_unet(p.sd_model.first_stage_model, aspect_ratio=p.width / p.height, tile_size=largest_tile_size_available(p.width, p.height), is_sdxl=shared.sd_model.is_sdxl, opts=shared.opts): x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True) x_samples_ddim = torch.stack(x_samples_ddim).float() @@ -1144,8 +1144,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): aspect_ratio = self.width / self.height x = self.rng.next() tile_size = largest_tile_size_available(self.width, self.height) - with split_attention(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=min(tile_size, 128), swap_size=1, disable=not shared.opts.hypertile_split_vae_attn, is_sdxl=shared.sd_model.is_sdxl): - with split_attention(self.sd_model.model, aspect_ratio=aspect_ratio, tile_size=min(tile_size, 256), swap_size=2, disable=not shared.opts.hypertile_split_unet_attn, is_sdxl=shared.sd_model.is_sdxl): + with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts): + with hypertile_context_unet(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, is_sdxl=shared.sd_model.is_sdxl, opts=shared.opts): devices.torch_gc() samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x)) del x @@ -1153,7 +1153,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): return samples if self.latent_scale_mode is None: - with split_attention(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=min(tile_size, 256), swap_size=1, disable=not shared.opts.hypertile_split_vae_attn, is_sdxl=shared.sd_model.is_sdxl): + with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts): decoded_samples = torch.stack(decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)).to(dtype=torch.float32) else: decoded_samples = None @@ -1245,15 +1245,16 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): if self.scripts is not None: self.scripts.before_hr(self) tile_size = largest_tile_size_available(target_width, target_height) - with split_attention(self.sd_model.first_stage_model, aspect_ratio=target_width / target_height, tile_size=min(tile_size, 256), swap_size=1, disable=not opts.hypertile_split_vae_attn, is_sdxl=shared.sd_model.is_sdxl): - with split_attention(self.sd_model.model, aspect_ratio=target_width / target_height, tile_size=min(tile_size, 256), swap_size=3, max_depth=1,scale_depth=True, disable=not opts.hypertile_split_unet_attn, is_sdxl=shared.sd_model.is_sdxl): + aspect_ratio = self.width / self.height + with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts): + with hypertile_context_unet(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, is_sdxl=shared.sd_model.is_sdxl, opts=shared.opts): samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning) sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio()) self.sampler = None devices.torch_gc() - with split_attention(self.sd_model.first_stage_model, aspect_ratio=target_width / target_height, tile_size=min(tile_size, 256), swap_size=1, disable=not opts.hypertile_split_vae_attn, is_sdxl=shared.sd_model.is_sdxl): + with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts): decoded_samples = decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True) self.is_hr_pass = False @@ -1533,8 +1534,8 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): x *= self.initial_noise_multiplier aspect_ratio = self.width / self.height tile_size = largest_tile_size_available(self.width, self.height) - with split_attention(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=min(tile_size, 128), swap_size=1, disable=not shared.opts.hypertile_split_vae_attn, is_sdxl=shared.sd_model.is_sdxl): - with split_attention(self.sd_model.model, aspect_ratio=aspect_ratio, tile_size=min(tile_size, 256), swap_size=2, disable=not shared.opts.hypertile_split_unet_attn, is_sdxl=shared.sd_model.is_sdxl): + with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts): + with hypertile_context_unet(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, is_sdxl=shared.sd_model.is_sdxl, opts=shared.opts): devices.torch_gc() samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning) -- cgit v1.2.3 From c40be2252ab1c8c289562db208c5ac6618bd8545 Mon Sep 17 00:00:00 2001 From: aria1th <35677394+aria1th@users.noreply.github.com> Date: Fri, 17 Nov 2023 09:22:27 +0900 Subject: Fix critical issue - unet apply --- modules/processing.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index c622ff33..2fda7f33 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -874,7 +874,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: else: if opts.sd_vae_decode_method != 'Full': p.extra_generation_params['VAE Decoder'] = opts.sd_vae_decode_method - with hypertile_context_unet(p.sd_model.first_stage_model, aspect_ratio=p.width / p.height, tile_size=largest_tile_size_available(p.width, p.height), is_sdxl=shared.sd_model.is_sdxl, opts=shared.opts): + with hypertile_context_unet(p.sd_model.model, aspect_ratio=p.width / p.height, tile_size=largest_tile_size_available(p.width, p.height), is_sdxl=shared.sd_model.is_sdxl, opts=shared.opts): x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True) x_samples_ddim = torch.stack(x_samples_ddim).float() @@ -1145,7 +1145,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): x = self.rng.next() tile_size = largest_tile_size_available(self.width, self.height) with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts): - with hypertile_context_unet(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, is_sdxl=shared.sd_model.is_sdxl, opts=shared.opts): + with hypertile_context_unet(self.sd_model.model, aspect_ratio=aspect_ratio, tile_size=tile_size, is_sdxl=shared.sd_model.is_sdxl, opts=shared.opts): devices.torch_gc() samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x)) del x @@ -1247,7 +1247,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): tile_size = largest_tile_size_available(target_width, target_height) aspect_ratio = self.width / self.height with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts): - with hypertile_context_unet(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, is_sdxl=shared.sd_model.is_sdxl, opts=shared.opts): + with hypertile_context_unet(self.sd_model.model, aspect_ratio=aspect_ratio, tile_size=tile_size, is_sdxl=shared.sd_model.is_sdxl, opts=shared.opts): samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning) sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio()) @@ -1535,7 +1535,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): aspect_ratio = self.width / self.height tile_size = largest_tile_size_available(self.width, self.height) with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts): - with hypertile_context_unet(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, is_sdxl=shared.sd_model.is_sdxl, opts=shared.opts): + with hypertile_context_unet(self.sd_model.model, aspect_ratio=aspect_ratio, tile_size=tile_size, is_sdxl=shared.sd_model.is_sdxl, opts=shared.opts): devices.torch_gc() samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning) -- cgit v1.2.3 From 97431f29feb17ffc96ca95e9b3efec87be9d8b3a Mon Sep 17 00:00:00 2001 From: aria1th <35677394+aria1th@users.noreply.github.com> Date: Fri, 17 Nov 2023 10:05:28 +0900 Subject: fix double gc and decoding with unet context --- modules/processing.py | 5 ++--- 1 file changed, 2 insertions(+), 3 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 2fda7f33..36c2be5e 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -874,7 +874,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: else: if opts.sd_vae_decode_method != 'Full': p.extra_generation_params['VAE Decoder'] = opts.sd_vae_decode_method - with hypertile_context_unet(p.sd_model.model, aspect_ratio=p.width / p.height, tile_size=largest_tile_size_available(p.width, p.height), is_sdxl=shared.sd_model.is_sdxl, opts=shared.opts): + with hypertile_context_vae(p.sd_model.first_stage_model, aspect_ratio=p.width / p.height, tile_size=largest_tile_size_available(p.width, p.height), opts=shared.opts): x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True) x_samples_ddim = torch.stack(x_samples_ddim).float() @@ -1146,11 +1146,11 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): tile_size = largest_tile_size_available(self.width, self.height) with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts): with hypertile_context_unet(self.sd_model.model, aspect_ratio=aspect_ratio, tile_size=tile_size, is_sdxl=shared.sd_model.is_sdxl, opts=shared.opts): - devices.torch_gc() samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x)) del x if not self.enable_hr: return samples + devices.torch_gc() if self.latent_scale_mode is None: with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts): @@ -1536,7 +1536,6 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): tile_size = largest_tile_size_available(self.width, self.height) with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts): with hypertile_context_unet(self.sd_model.model, aspect_ratio=aspect_ratio, tile_size=tile_size, is_sdxl=shared.sd_model.is_sdxl, opts=shared.opts): - devices.torch_gc() samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning) if self.mask is not None: -- cgit v1.2.3 From d2e0c1ca132f4f0d98b77397a9f353d4ad8e7c4b Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Sun, 26 Nov 2023 10:51:45 +0300 Subject: rework hypertile into a built-in extension --- modules/processing.py | 37 +++++++++++++------------------------ 1 file changed, 13 insertions(+), 24 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 36c2be5e..ac58ef86 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -24,7 +24,6 @@ from modules.shared import opts, cmd_opts, state import modules.shared as shared import modules.paths as paths import modules.face_restoration -from modules.hypertile import set_hypertile_seed, largest_tile_size_available, hypertile_context_unet, hypertile_context_vae import modules.images as images import modules.styles import modules.sd_models as sd_models @@ -861,8 +860,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: p.comment(comment) p.extra_generation_params.update(model_hijack.extra_generation_params) - set_hypertile_seed(p.seed) - # add batch size + hypertile status to information to reproduce the run + if p.n_iter > 1: shared.state.job = f"Batch {n+1} out of {p.n_iter}" @@ -874,8 +872,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: else: if opts.sd_vae_decode_method != 'Full': p.extra_generation_params['VAE Decoder'] = opts.sd_vae_decode_method - with hypertile_context_vae(p.sd_model.first_stage_model, aspect_ratio=p.width / p.height, tile_size=largest_tile_size_available(p.width, p.height), opts=shared.opts): - x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True) + x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True) x_samples_ddim = torch.stack(x_samples_ddim).float() x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) @@ -1141,25 +1138,23 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts): self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model) - aspect_ratio = self.width / self.height + x = self.rng.next() - tile_size = largest_tile_size_available(self.width, self.height) - with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts): - with hypertile_context_unet(self.sd_model.model, aspect_ratio=aspect_ratio, tile_size=tile_size, is_sdxl=shared.sd_model.is_sdxl, opts=shared.opts): - samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x)) + samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x)) del x + if not self.enable_hr: return samples devices.torch_gc() if self.latent_scale_mode is None: - with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts): - decoded_samples = torch.stack(decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)).to(dtype=torch.float32) + decoded_samples = torch.stack(decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)).to(dtype=torch.float32) else: decoded_samples = None with sd_models.SkipWritingToConfig(): sd_models.reload_model_weights(info=self.hr_checkpoint_info) + return self.sample_hr_pass(samples, decoded_samples, seeds, subseeds, subseed_strength, prompts) def sample_hr_pass(self, samples, decoded_samples, seeds, subseeds, subseed_strength, prompts): @@ -1244,18 +1239,15 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): if self.scripts is not None: self.scripts.before_hr(self) - tile_size = largest_tile_size_available(target_width, target_height) - aspect_ratio = self.width / self.height - with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts): - with hypertile_context_unet(self.sd_model.model, aspect_ratio=aspect_ratio, tile_size=tile_size, is_sdxl=shared.sd_model.is_sdxl, opts=shared.opts): - samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning) + + samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning) sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio()) self.sampler = None devices.torch_gc() - with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts): - decoded_samples = decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True) + + decoded_samples = decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True) self.is_hr_pass = False return decoded_samples @@ -1532,11 +1524,8 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): if self.initial_noise_multiplier != 1.0: self.extra_generation_params["Noise multiplier"] = self.initial_noise_multiplier x *= self.initial_noise_multiplier - aspect_ratio = self.width / self.height - tile_size = largest_tile_size_available(self.width, self.height) - with hypertile_context_vae(self.sd_model.first_stage_model, aspect_ratio=aspect_ratio, tile_size=tile_size, opts=shared.opts): - with hypertile_context_unet(self.sd_model.model, aspect_ratio=aspect_ratio, tile_size=tile_size, is_sdxl=shared.sd_model.is_sdxl, opts=shared.opts): - samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning) + + samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning) if self.mask is not None: samples = samples * self.nmask + self.init_latent * self.mask -- cgit v1.2.3 From dec791d35ddcd02ca33563d3d0355e05e45de8ad Mon Sep 17 00:00:00 2001 From: CodeHatchling Date: Tue, 28 Nov 2023 15:05:01 -0700 Subject: Removed code which forces the inpainting mask to be 0 or 1. Now fractional values (e.g. 0.5) are accepted. --- modules/processing.py | 6 +----- 1 file changed, 1 insertion(+), 5 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index e124e7f0..317458f5 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -83,7 +83,7 @@ def apply_overlay(image, paste_loc, index, overlays): def create_binary_mask(image): if image.mode == 'RGBA' and image.getextrema()[-1] != (255, 255): - image = image.split()[-1].convert("L").point(lambda x: 255 if x > 128 else 0) + image = image.split()[-1].convert("L") else: image = image.convert('L') return image @@ -319,9 +319,6 @@ class StableDiffusionProcessing: conditioning_mask = np.array(image_mask.convert("L")) conditioning_mask = conditioning_mask.astype(np.float32) / 255.0 conditioning_mask = torch.from_numpy(conditioning_mask[None, None]) - - # Inpainting model uses a discretized mask as input, so we round to either 1.0 or 0.0 - conditioning_mask = torch.round(conditioning_mask) else: conditioning_mask = source_image.new_ones(1, 1, *source_image.shape[-2:]) @@ -1504,7 +1501,6 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2])) latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255 latmask = latmask[0] - latmask = np.around(latmask) latmask = np.tile(latmask[None], (4, 1, 1)) self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(self.sd_model.dtype) -- cgit v1.2.3 From bbba133f054706c3668b7d03b0e6d0afc15705db Mon Sep 17 00:00:00 2001 From: CodeHatchling Date: Tue, 28 Nov 2023 15:09:43 -0700 Subject: Removed conflicting step that replaces the softly inpainted latents with a naive blend with the original latents. --- modules/processing.py | 3 --- 1 file changed, 3 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 317458f5..ae894f1a 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -1523,9 +1523,6 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning) - if self.mask is not None: - samples = samples * self.nmask + self.init_latent * self.mask - del x devices.torch_gc() -- cgit v1.2.3 From a6e584645305c0a91a3d46f73546e191b249210f Mon Sep 17 00:00:00 2001 From: CodeHatchling Date: Tue, 28 Nov 2023 16:13:42 -0700 Subject: Nerfs the aggressive post-processing step of overlaying the original image. --- modules/processing.py | 14 +++++++++++--- 1 file changed, 11 insertions(+), 3 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index ae894f1a..12e08e87 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -1412,7 +1412,12 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): image_mask = Image.fromarray(np_mask) if self.inpaint_full_res: - self.mask_for_overlay = image_mask + np_mask = np.array(image_mask).astype(np.float32) + np_mask /= 255 + np_mask = 1-pow(1-np_mask, 100) + np_mask *= 255 + np_mask = np.clip(np_mask, 0, 255).astype(np.uint8) + self.mask_for_overlay = Image.fromarray(np_mask) mask = image_mask.convert('L') crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding) crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height) @@ -1423,8 +1428,11 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): self.paste_to = (x1, y1, x2-x1, y2-y1) else: image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height) - np_mask = np.array(image_mask) - np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8) + np_mask = np.array(image_mask).astype(np.float32) + np_mask /= 255 + np_mask = 1-pow(1-np_mask, 100) + np_mask *= 255 + np_mask = np.clip(np_mask, 0, 255).astype(np.uint8) self.mask_for_overlay = Image.fromarray(np_mask) self.overlay_images = [] -- cgit v1.2.3 From debf836fcc8d9becc3da8b1a29e33f40b0d9ef3e Mon Sep 17 00:00:00 2001 From: CodeHatchling Date: Tue, 28 Nov 2023 16:15:36 -0700 Subject: Added UI elements to control blending parameters. --- modules/processing.py | 3 +++ 1 file changed, 3 insertions(+) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 12e08e87..da4d6fda 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -1349,6 +1349,9 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): mask_blur_x: int = 4 mask_blur_y: int = 4 mask_blur: int = None + mask_blend_power: float = 1 + mask_blend_scale: float = 1 + mask_blend_offset: float = 0 inpainting_fill: int = 0 inpaint_full_res: bool = True inpaint_full_res_padding: int = 0 -- cgit v1.2.3 From c5c7fa06aae1ae9f8b6d29ae2da3874921d4729b Mon Sep 17 00:00:00 2001 From: CodeHatchling Date: Tue, 28 Nov 2023 22:35:07 -0700 Subject: Added slider for detail preservation strength, removed largely needless offset parameter, changed labels in UI and for saving to/pasting data from PNG files. --- modules/processing.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index da4d6fda..361e8b05 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -1351,7 +1351,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): mask_blur: int = None mask_blend_power: float = 1 mask_blend_scale: float = 1 - mask_blend_offset: float = 0 + inpaint_detail_preservation: float = 16 inpainting_fill: int = 0 inpaint_full_res: bool = True inpaint_full_res_padding: int = 0 -- cgit v1.2.3 From c7a1ff87207544dd4bcf3aefffa67a4a38678c16 Mon Sep 17 00:00:00 2001 From: CodeHatchling Date: Tue, 28 Nov 2023 23:31:10 -0700 Subject: Tweaked default values. --- modules/processing.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 361e8b05..92fdebad 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -1350,8 +1350,8 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): mask_blur_y: int = 4 mask_blur: int = None mask_blend_power: float = 1 - mask_blend_scale: float = 1 - inpaint_detail_preservation: float = 16 + mask_blend_scale: float = 0.5 + inpaint_detail_preservation: float = 4 inpainting_fill: int = 0 inpaint_full_res: bool = True inpaint_full_res_padding: int = 0 -- cgit v1.2.3 From b58d061e41cba6fb91910d310d53e175d0511650 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Sat, 2 Dec 2023 08:33:28 +0300 Subject: infotext updates: add option to disregard certain infotext fields, add option to not include VAE in infotext, add explanation to infotext settings page, move some options to infotext settings page --- modules/processing.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index ac58ef86..5ab6ddde 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -679,8 +679,8 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter "Size": f"{p.width}x{p.height}", "Model hash": p.sd_model_hash if opts.add_model_hash_to_info else None, "Model": p.sd_model_name if opts.add_model_name_to_info else None, - "VAE hash": p.sd_vae_hash if opts.add_model_hash_to_info else None, - "VAE": p.sd_vae_name if opts.add_model_name_to_info else None, + "VAE hash": p.sd_vae_hash if opts.add_vae_hash_to_info else None, + "VAE": p.sd_vae_name if opts.add_vae_name_to_info else None, "Variation seed": (None if p.subseed_strength == 0 else (p.all_subseeds[0] if use_main_prompt else all_subseeds[index])), "Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength), "Seed resize from": (None if p.seed_resize_from_w <= 0 or p.seed_resize_from_h <= 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"), -- cgit v1.2.3 From 83e8c322762c545fd589c060811379582926060f Mon Sep 17 00:00:00 2001 From: catboxanon <122327233+catboxanon@users.noreply.github.com> Date: Sat, 2 Dec 2023 13:30:53 -0500 Subject: Fix `save_samples` being checked early when saving masked composite --- modules/processing.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 5ab6ddde..4f265801 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -938,14 +938,14 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: if opts.enable_pnginfo: image.info["parameters"] = text output_images.append(image) - if save_samples and hasattr(p, 'mask_for_overlay') and p.mask_for_overlay and any([opts.save_mask, opts.save_mask_composite, opts.return_mask, opts.return_mask_composite]): + if hasattr(p, 'mask_for_overlay') and p.mask_for_overlay and any([opts.save_mask, opts.save_mask_composite, opts.return_mask, opts.return_mask_composite]): image_mask = p.mask_for_overlay.convert('RGB') image_mask_composite = Image.composite(image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, p.mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA') - if opts.save_mask: + if save_samples and opts.save_mask: images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask") - if opts.save_mask_composite: + if save_samples and opts.save_mask_composite: images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask-composite") if opts.return_mask: -- cgit v1.2.3 From 73ab982d1b7394574d1cf2e0a151bc457eeed769 Mon Sep 17 00:00:00 2001 From: CodeHatchling Date: Sat, 2 Dec 2023 21:07:02 -0700 Subject: Blend masks are now produced afterward, based on an estimate of the visual difference between the original and modified latent images. This should remove ghosting and clipping artifacts from masks, while preserving the details of largely unchanged content. --- modules/processing.py | 119 ++++++++++++++++++++++++++++++++++++++------------ 1 file changed, 90 insertions(+), 29 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 92fdebad..ad716e11 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -9,7 +9,7 @@ from dataclasses import dataclass, field import torch import numpy as np -from PIL import Image, ImageOps +from PIL import Image, ImageOps, ImageFilter import random import cv2 from skimage import exposure @@ -62,6 +62,16 @@ def apply_color_correction(correction, original_image): return image.convert('RGB') +def uncrop(image, dest_size, paste_loc): + x, y, w, h = paste_loc + base_image = Image.new('RGBA', dest_size) + image = images.resize_image(1, image, w, h) + base_image.paste(image, (x, y)) + image = base_image + + return image + + def apply_overlay(image, paste_loc, index, overlays): if overlays is None or index >= len(overlays): return image @@ -69,11 +79,7 @@ def apply_overlay(image, paste_loc, index, overlays): overlay = overlays[index] if paste_loc is not None: - x, y, w, h = paste_loc - base_image = Image.new('RGBA', (overlay.width, overlay.height)) - image = images.resize_image(1, image, w, h) - base_image.paste(image, (x, y)) - image = base_image + image = uncrop(image, (overlay.width, overlay.height), paste_loc) image = image.convert('RGBA') image.alpha_composite(overlay) @@ -140,6 +146,7 @@ class StableDiffusionProcessing: do_not_save_grid: bool = False extra_generation_params: dict[str, Any] = None overlay_images: list = None + masks_for_overlay: list = None eta: float = None do_not_reload_embeddings: bool = False denoising_strength: float = 0 @@ -865,11 +872,66 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: if getattr(samples_ddim, 'already_decoded', False): x_samples_ddim = samples_ddim + # todo: generate masks the old fashioned way else: if opts.sd_vae_decode_method != 'Full': p.extra_generation_params['VAE Decoder'] = opts.sd_vae_decode_method - x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True) + # Generate the mask(s) based on similarity between the original and denoised latent vectors + if getattr(p, "image_mask", None) is not None: + # latent_mask = p.nmask[0].float().cpu() + + # convert the original mask into a form we use to scale distances for thresholding + # mask_scalar = 1-(torch.clamp(latent_mask, min=0, max=1) ** (p.mask_blend_scale / 2)) + # mask_scalar = mask_scalar / (1.00001-mask_scalar) + # mask_scalar = mask_scalar.numpy() + + latent_orig = p.init_latent + latent_proc = samples_ddim + latent_distance = torch.norm(latent_proc - latent_orig, p=2, dim=1) + + kernel, kernel_center = images.get_gaussian_kernel(stddev_radius=1.5, max_radius=2) + + for i, (distance_map, overlay_image) in enumerate(zip(latent_distance, p.overlay_images)): + converted_mask = distance_map.float().cpu().numpy() + converted_mask = images.weighted_histogram_filter(converted_mask, kernel, kernel_center, + percentile_min=0.9, percentile_max=1, min_width=1) + converted_mask = images.weighted_histogram_filter(converted_mask, kernel, kernel_center, + percentile_min=0.25, percentile_max=0.75, min_width=1) + + # The distance at which opacity of original decreases to 50% + # half_weighted_distance = 1 # * mask_scalar + # converted_mask = converted_mask / half_weighted_distance + + converted_mask = 1 / (1 + converted_mask ** 2) + converted_mask = images.smootherstep(converted_mask) + converted_mask = 1 - converted_mask + converted_mask = 255. * converted_mask + converted_mask = converted_mask.astype(np.uint8) + converted_mask = Image.fromarray(converted_mask) + converted_mask = images.resize_image(2, converted_mask, p.width, p.height) + converted_mask = create_binary_mask(converted_mask)