From 2b91251637078e04472c91a06a8d9c4db9c1dcf0 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 22 Oct 2022 12:23:45 +0300 Subject: removed aesthetic gradients as built-in added support for extensions --- modules/processing.py | 35 ++++++++++++++++++++++------------- 1 file changed, 22 insertions(+), 13 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index ff1ec4c9..372489f7 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -104,6 +104,12 @@ class StableDiffusionProcessing(): self.seed_resize_from_h = 0 self.seed_resize_from_w = 0 + self.scripts = None + self.script_args = None + self.all_prompts = None + self.all_seeds = None + self.all_subseeds = None + def init(self, all_prompts, all_seeds, all_subseeds): pass @@ -350,32 +356,35 @@ def process_images(p: StableDiffusionProcessing) -> Processed: shared.prompt_styles.apply_styles(p) if type(p.prompt) == list: - all_prompts = p.prompt + p.all_prompts = p.prompt else: - all_prompts = p.batch_size * p.n_iter * [p.prompt] + p.all_prompts = p.batch_size * p.n_iter * [p.prompt] if type(seed) == list: - all_seeds = seed + p.all_seeds = seed else: - all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(all_prompts))] + p.all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(p.all_prompts))] if type(subseed) == list: - all_subseeds = subseed + p.all_subseeds = subseed else: - all_subseeds = [int(subseed) + x for x in range(len(all_prompts))] + p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))] def infotext(iteration=0, position_in_batch=0): - return create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration, position_in_batch) + return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch) if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings: model_hijack.embedding_db.load_textual_inversion_embeddings() + if p.scripts is not None: + p.scripts.run_alwayson_scripts(p) + infotexts = [] output_images = [] with torch.no_grad(), p.sd_model.ema_scope(): with devices.autocast(): - p.init(all_prompts, all_seeds, all_subseeds) + p.init(p.all_prompts, p.all_seeds, p.all_subseeds) if state.job_count == -1: state.job_count = p.n_iter @@ -387,9 +396,9 @@ def process_images(p: StableDiffusionProcessing) -> Processed: if state.interrupted: break - prompts = all_prompts[n * p.batch_size:(n + 1) * p.batch_size] - seeds = all_seeds[n * p.batch_size:(n + 1) * p.batch_size] - subseeds = all_subseeds[n * p.batch_size:(n + 1) * p.batch_size] + prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size] + seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size] + subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size] if (len(prompts) == 0): break @@ -490,10 +499,10 @@ def process_images(p: StableDiffusionProcessing) -> Processed: index_of_first_image = 1 if opts.grid_save: - images.save_image(grid, p.outpath_grids, "grid", all_seeds[0], all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True) + images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True) devices.torch_gc() - return Processed(p, output_images, all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=all_subseeds[0], all_prompts=all_prompts, all_seeds=all_seeds, all_subseeds=all_subseeds, index_of_first_image=index_of_first_image, infotexts=infotexts) + return Processed(p, output_images, p.all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], all_prompts=p.all_prompts, all_seeds=p.all_seeds, all_subseeds=p.all_subseeds, index_of_first_image=index_of_first_image, infotexts=infotexts) class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): -- cgit v1.2.3