From 501993ebf210bf3b55173ec1910f0c84c7e75424 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Mon, 1 Jan 2024 19:31:06 +0300 Subject: added a button to run hires fix on selected image in the gallery --- modules/processing.py | 46 +++++++++++++++++++++++++++++++++++++--------- 1 file changed, 37 insertions(+), 9 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 213a2879..045c7d79 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -179,6 +179,7 @@ class StableDiffusionProcessing: token_merging_ratio = 0 token_merging_ratio_hr = 0 disable_extra_networks: bool = False + firstpass_image: Image = None scripts_value: scripts.ScriptRunner = field(default=None, init=False) script_args_value: list = field(default=None, init=False) @@ -1238,18 +1239,45 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts): self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model) - x = self.rng.next() - samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x)) - del x + if self.firstpass_image is not None and self.enable_hr: + # here we don't need to generate image, we just take self.firstpass_image and prepare it for hires fix - if not self.enable_hr: - return samples - devices.torch_gc() + if self.latent_scale_mode is None: + image = np.array(self.firstpass_image).astype(np.float32) / 255.0 * 2.0 - 1.0 + image = np.moveaxis(image, 2, 0) + + samples = None + decoded_samples = torch.asarray(np.expand_dims(image, 0)) + + else: + image = np.array(self.firstpass_image).astype(np.float32) / 255.0 + image = np.moveaxis(image, 2, 0) + image = torch.from_numpy(np.expand_dims(image, axis=0)) + image = image.to(shared.device, dtype=devices.dtype_vae) + + if opts.sd_vae_encode_method != 'Full': + self.extra_generation_params['VAE Encoder'] = opts.sd_vae_encode_method + + samples = images_tensor_to_samples(image, approximation_indexes.get(opts.sd_vae_encode_method), self.sd_model) + decoded_samples = None + devices.torch_gc() - if self.latent_scale_mode is None: - decoded_samples = torch.stack(decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)).to(dtype=torch.float32) else: - decoded_samples = None + # here we generate an image normally + + x = self.rng.next() + samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x)) + del x + + if not self.enable_hr: + return samples + + devices.torch_gc() + + if self.latent_scale_mode is None: + decoded_samples = torch.stack(decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)).to(dtype=torch.float32) + else: + decoded_samples = None with sd_models.SkipWritingToConfig(): sd_models.reload_model_weights(info=self.hr_checkpoint_info) -- cgit v1.2.3