From da464a3fb39ecc6ea7b22fe87271194480d8501c Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Wed, 12 Jul 2023 23:52:43 +0300 Subject: SDXL support --- modules/processing.py | 7 +++++-- 1 file changed, 5 insertions(+), 2 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index cd568a20..85d35423 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -343,10 +343,13 @@ class StableDiffusionProcessing: return cache[1] def setup_conds(self): + prompts = prompt_parser.SdConditioning(self.prompts, width=self.width, height=self.height) + negative_prompts = prompt_parser.SdConditioning(self.negative_prompts, width=self.width, height=self.height) + sampler_config = sd_samplers.find_sampler_config(self.sampler_name) self.step_multiplier = 2 if sampler_config and sampler_config.options.get("second_order", False) else 1 - self.uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, self.negative_prompts, self.steps * self.step_multiplier, [self.cached_uc], self.extra_network_data) - self.c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, self.prompts, self.steps * self.step_multiplier, [self.cached_c], self.extra_network_data) + self.uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, self.steps * self.step_multiplier, [self.cached_uc], self.extra_network_data) + self.c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, self.steps * self.step_multiplier, [self.cached_c], self.extra_network_data) def parse_extra_network_prompts(self): self.prompts, self.extra_network_data = extra_networks.parse_prompts(self.prompts) -- cgit v1.2.3 From 594c8e7b263d9b37f4b18b56b159aeb6d1bba1b4 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Thu, 13 Jul 2023 11:35:52 +0300 Subject: fix CLIP doing the unneeded normalization revert SD2.1 back to use the original repo add SDXL's force_zero_embeddings to negative prompt --- modules/processing.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 85d35423..f01a6907 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -344,7 +344,7 @@ class StableDiffusionProcessing: def setup_conds(self): prompts = prompt_parser.SdConditioning(self.prompts, width=self.width, height=self.height) - negative_prompts = prompt_parser.SdConditioning(self.negative_prompts, width=self.width, height=self.height) + negative_prompts = prompt_parser.SdConditioning(self.negative_prompts, width=self.width, height=self.height, is_negative_prompt=True) sampler_config = sd_samplers.find_sampler_config(self.sampler_name) self.step_multiplier = 2 if sampler_config and sampler_config.options.get("second_order", False) else 1 -- cgit v1.2.3 From 471a5a66b73921d569242daccc5275cb195e3f06 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Fri, 14 Jul 2023 17:54:09 +0300 Subject: add more relevant fields to caching conds --- modules/processing.py | 17 +++++++++++++++-- 1 file changed, 15 insertions(+), 2 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index f01a6907..f68e010d 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -330,8 +330,21 @@ class StableDiffusionProcessing: caches is a list with items described above. """ + + cached_params = ( + required_prompts, + steps, + opts.CLIP_stop_at_last_layers, + shared.sd_model.sd_checkpoint_info, + extra_network_data, + opts.sdxl_crop_left, + opts.sdxl_crop_top, + self.width, + self.height, + ) + for cache in caches: - if cache[0] is not None and (required_prompts, steps, opts.CLIP_stop_at_last_layers, shared.sd_model.sd_checkpoint_info, extra_network_data) == cache[0]: + if cache[0] is not None and cached_params == cache[0]: return cache[1] cache = caches[0] @@ -339,7 +352,7 @@ class StableDiffusionProcessing: with devices.autocast(): cache[1] = function(shared.sd_model, required_prompts, steps) - cache[0] = (required_prompts, steps, opts.CLIP_stop_at_last_layers, shared.sd_model.sd_checkpoint_info, extra_network_data) + cache[0] = cached_params return cache[1] def setup_conds(self): -- cgit v1.2.3 From 14cf434bc36d0ef31f31d4c6cd2bd15d7857d5c8 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Sat, 15 Jul 2023 07:33:16 +0300 Subject: fix an issue in live previews that happens when you use SDXL with fp16 VAE --- modules/processing.py | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index f68e010d..eb4a60eb 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -539,8 +539,7 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see def decode_first_stage(model, x): - with devices.autocast(disable=x.dtype == devices.dtype_vae): - x = model.decode_first_stage(x) + x = model.decode_first_stage(x.to(devices.dtype_vae)) return x -- cgit v1.2.3 From 570f42afd122405116b39b880cdb5163fd5ca3e2 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Sun, 16 Jul 2023 12:28:50 +0300 Subject: possible fix for FP16 VAE failing in img2img SDXL --- modules/processing.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index e7b10808..6567b3cf 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -1303,7 +1303,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): image = torch.from_numpy(batch_images) image = 2. * image - 1. - image = image.to(shared.device) + image = image.to(shared.device, dtype=devices.dtype_vae) self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image)) -- cgit v1.2.3 From c8b55f29e2838e67bd9e394f5dbca4350ccbb68f Mon Sep 17 00:00:00 2001 From: w-e-w <40751091+w-e-w@users.noreply.github.com> Date: Wed, 19 Jul 2023 08:27:19 +0900 Subject: missing p save_image before-highres-fix --- modules/processing.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 6567b3cf..b89ca5c2 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -1029,7 +1029,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): image = sd_samplers.sample_to_image(image, index, approximation=0) info = create_infotext(self, self.all_prompts, self.all_seeds, self.all_subseeds, [], iteration=self.iteration, position_in_batch=index) - images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, info=info, suffix="-before-highres-fix") + images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, info=info, p=self, suffix="-before-highres-fix") if latent_scale_mode is not None: for i in range(samples.shape[0]): -- cgit v1.2.3 From 4334d25978ded517a76359e9e92b8101610cc35f Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Wed, 19 Jul 2023 15:49:31 +0300 Subject: bugfix: model name was added together with directory name to infotext and to [model_name] filename pattern --- modules/processing.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index b89ca5c2..e028bf9e 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -587,7 +587,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter "Face restoration": (opts.face_restoration_model if p.restore_faces else None), "Size": f"{p.width}x{p.height}", "Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash), - "Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')), + "Model": (None if not opts.add_model_name_to_info else shared.sd_model.sd_checkpoint_info.name_for_extra), "Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]), "Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength), "Seed resize from": (None if p.seed_resize_from_w <= 0 or p.seed_resize_from_h <= 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"), -- cgit v1.2.3 From 23c947ab0374220c39ac54fc00afcb74e809dd95 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Wed, 19 Jul 2023 20:23:30 +0300 Subject: automatically switch to 32-bit float VAE if the generated picture has NaNs. --- modules/processing.py | 41 ++++++++++++++++++++++++++++++++++++----- 1 file changed, 36 insertions(+), 5 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index e028bf9e..a74a5302 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -14,7 +14,7 @@ from skimage import exposure from typing import Any, Dict, List import modules.sd_hijack -from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet +from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet, errors from modules.sd_hijack import model_hijack from modules.shared import opts, cmd_opts, state import modules.shared as shared @@ -538,6 +538,40 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see return x +def decode_latent_batch(model, batch, target_device=None, check_for_nans=False): + samples = [] + + for i in range(batch.shape[0]): + sample = decode_first_stage(model, batch[i:i + 1])[0] + + if check_for_nans: + try: + devices.test_for_nans(sample, "vae") + except devices.NansException as e: + if devices.dtype_vae == torch.float32 or not shared.opts.auto_vae_precision: + raise e + + errors.print_error_explanation( + "A tensor with all NaNs was produced in VAE.\n" + "Web UI will now convert VAE into 32-bit float and retry.\n" + "To disable this behavior, disable the 'Automaticlly revert VAE to 32-bit floats' setting.\n" + "To always start with 32-bit VAE, use --no-half-vae commandline flag." + ) + + devices.dtype_vae = torch.float32 + model.first_stage_model.to(devices.dtype_vae) + batch = batch.to(devices.dtype_vae) + + sample = decode_first_stage(model, batch[i:i + 1])[0] + + if target_device is not None: + sample = sample.to(target_device) + + samples.append(sample) + + return samples + + def decode_first_stage(model, x): x = model.decode_first_stage(x.to(devices.dtype_vae)) @@ -758,10 +792,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast(): samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts) - x_samples_ddim = [decode_first_stage(p.sd_model, samples_ddim[i:i+1].to(dtype=devices.dtype_vae))[0].cpu() for i in range(samples_ddim.size(0))] - for x in x_samples_ddim: - devices.test_for_nans(x, "vae") - + x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True) x_samples_ddim = torch.stack(x_samples_ddim).float() x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) -- cgit v1.2.3 From ca45ff1ae6fdd5c2dcd754fde95dd29f49bd414b Mon Sep 17 00:00:00 2001 From: ljleb Date: Mon, 24 Jul 2023 13:52:24 -0400 Subject: add postprocess_batch_list callback --- modules/processing.py | 24 +++++++++++++++++++++++- 1 file changed, 23 insertions(+), 1 deletion(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index a74a5302..c16404f4 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -717,7 +717,25 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))] def infotext(iteration=0, position_in_batch=0, use_main_prompt=False): - return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch, use_main_prompt) + all_prompts = p.all_prompts[:] + all_seeds = p.all_seeds[:] + all_subseeds = p.all_subseeds[:] + + # apply changes to generation data + all_prompts[n * p.batch_size:(n + 1) * p.batch_size] = p.prompts + all_seeds[n * p.batch_size:(n + 1) * p.batch_size] = p.seeds + all_subseeds[n * p.batch_size:(n + 1) * p.batch_size] = p.subseeds + + # update p.all_negative_prompts in case extensions changed the size of the batch + # create_infotext below uses it + old_negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size] + p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size] = p.negative_prompts + + try: + return create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration, position_in_batch, use_main_prompt) + finally: + # restore p.all_negative_prompts in case extensions changed the size of the batch + p.all_negative_prompts[n * p.batch_size:n * p.batch_size + len(p.negative_prompts)] = old_negative_prompts if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings: model_hijack.embedding_db.load_textual_inversion_embeddings() @@ -806,6 +824,10 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: if p.scripts is not None: p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n) + postprocess_batch_list_args = scripts.PostprocessBatchListArgs(list(x_samples_ddim)) + p.scripts.postprocess_batch_list(p, postprocess_batch_list_args, batch_number=n) + x_samples_ddim = postprocess_batch_list_args.images + for i, x_sample in enumerate(x_samples_ddim): p.batch_index = i -- cgit v1.2.3 From 6b68b590321fcac2ad6d71c5aee1ac02687328d7 Mon Sep 17 00:00:00 2001 From: ljleb Date: Mon, 24 Jul 2023 15:38:52 -0400 Subject: use local vars --- modules/processing.py | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index c16404f4..7043477f 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -722,20 +722,20 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: all_subseeds = p.all_subseeds[:] # apply changes to generation data - all_prompts[n * p.batch_size:(n + 1) * p.batch_size] = p.prompts - all_seeds[n * p.batch_size:(n + 1) * p.batch_size] = p.seeds - all_subseeds[n * p.batch_size:(n + 1) * p.batch_size] = p.subseeds + all_prompts[iteration * p.batch_size:(iteration + 1) * p.batch_size] = p.prompts + all_seeds[iteration * p.batch_size:(iteration + 1) * p.batch_size] = p.seeds + all_subseeds[iteration * p.batch_size:(iteration + 1) * p.batch_size] = p.subseeds # update p.all_negative_prompts in case extensions changed the size of the batch # create_infotext below uses it - old_negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size] - p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size] = p.negative_prompts + old_negative_prompts = p.all_negative_prompts[iteration * p.batch_size:(iteration + 1) * p.batch_size] + p.all_negative_prompts[iteration * p.batch_size:(iteration + 1) * p.batch_size] = p.negative_prompts try: return create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration, position_in_batch, use_main_prompt) finally: # restore p.all_negative_prompts in case extensions changed the size of the batch - p.all_negative_prompts[n * p.batch_size:n * p.batch_size + len(p.negative_prompts)] = old_negative_prompts + p.all_negative_prompts[iteration * p.batch_size:iteration * p.batch_size + len(p.negative_prompts)] = old_negative_prompts if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings: model_hijack.embedding_db.load_textual_inversion_embeddings() -- cgit v1.2.3 From 5b06607476d1ef2c9d16fe8b21c786b2ca13b95c Mon Sep 17 00:00:00 2001 From: ljleb Date: Mon, 24 Jul 2023 15:43:06 -0400 Subject: simplify --- modules/processing.py | 8 +++++--- 1 file changed, 5 insertions(+), 3 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 7043477f..6dc178e1 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -718,24 +718,26 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: def infotext(iteration=0, position_in_batch=0, use_main_prompt=False): all_prompts = p.all_prompts[:] + all_negative_prompts = p.all_negative_prompts[:] all_seeds = p.all_seeds[:] all_subseeds = p.all_subseeds[:] # apply changes to generation data all_prompts[iteration * p.batch_size:(iteration + 1) * p.batch_size] = p.prompts + all_negative_prompts[iteration * p.batch_size:(iteration + 1) * p.batch_size] = p.negative_prompts all_seeds[iteration * p.batch_size:(iteration + 1) * p.batch_size] = p.seeds all_subseeds[iteration * p.batch_size:(iteration + 1) * p.batch_size] = p.subseeds # update p.all_negative_prompts in case extensions changed the size of the batch # create_infotext below uses it - old_negative_prompts = p.all_negative_prompts[iteration * p.batch_size:(iteration + 1) * p.batch_size] - p.all_negative_prompts[iteration * p.batch_size:(iteration + 1) * p.batch_size] = p.negative_prompts + old_negative_prompts = p.all_negative_prompts + p.all_negative_prompts = all_negative_prompts try: return create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration, position_in_batch, use_main_prompt) finally: # restore p.all_negative_prompts in case extensions changed the size of the batch - p.all_negative_prompts[iteration * p.batch_size:iteration * p.batch_size + len(p.negative_prompts)] = old_negative_prompts + p.all_negative_prompts = old_negative_prompts if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings: model_hijack.embedding_db.load_textual_inversion_embeddings() -- cgit v1.2.3 From ae36e0899fe912cd701fc4bae5c9d0ce9a5b3e41 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Wed, 26 Jul 2023 06:36:06 +0300 Subject: alternative solution for infotext issue --- modules/processing.py | 62 ++++++++++++++++++++++----------------------------- 1 file changed, 27 insertions(+), 35 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 6dc178e1..146e409a 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -600,8 +600,12 @@ def program_version(): return res -def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0, use_main_prompt=False): - index = position_in_batch + iteration * p.batch_size +def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0, use_main_prompt=False, index=None, all_negative_prompts=None): + if index is None: + index = position_in_batch + iteration * p.batch_size + + if all_negative_prompts is None: + all_negative_prompts = p.all_negative_prompts clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers) enable_hr = getattr(p, 'enable_hr', False) @@ -642,7 +646,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None]) prompt_text = p.prompt if use_main_prompt else all_prompts[index] - negative_prompt_text = f"\nNegative prompt: {p.all_negative_prompts[index]}" if p.all_negative_prompts[index] else "" + negative_prompt_text = f"\nNegative prompt: {all_negative_prompts[index]}" if all_negative_prompts[index] else "" return f"{prompt_text}{negative_prompt_text}\n{generation_params_text}".strip() @@ -716,29 +720,6 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: else: p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))] - def infotext(iteration=0, position_in_batch=0, use_main_prompt=False): - all_prompts = p.all_prompts[:] - all_negative_prompts = p.all_negative_prompts[:] - all_seeds = p.all_seeds[:] - all_subseeds = p.all_subseeds[:] - - # apply changes to generation data - all_prompts[iteration * p.batch_size:(iteration + 1) * p.batch_size] = p.prompts - all_negative_prompts[iteration * p.batch_size:(iteration + 1) * p.batch_size] = p.negative_prompts - all_seeds[iteration * p.batch_size:(iteration + 1) * p.batch_size] = p.seeds - all_subseeds[iteration * p.batch_size:(iteration + 1) * p.batch_size] = p.subseeds - - # update p.all_negative_prompts in case extensions changed the size of the batch - # create_infotext below uses it - old_negative_prompts = p.all_negative_prompts - p.all_negative_prompts = all_negative_prompts - - try: - return create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration, position_in_batch, use_main_prompt) - finally: - # restore p.all_negative_prompts in case extensions changed the size of the batch - p.all_negative_prompts = old_negative_prompts - if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings: model_hijack.embedding_db.load_textual_inversion_embeddings() @@ -826,9 +807,20 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: if p.scripts is not None: p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n) - postprocess_batch_list_args = scripts.PostprocessBatchListArgs(list(x_samples_ddim)) - p.scripts.postprocess_batch_list(p, postprocess_batch_list_args, batch_number=n) - x_samples_ddim = postprocess_batch_list_args.images + batch_params = scripts.PostprocessBatchListArgs( + list(x_samples_ddim), + p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size], + p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size], + p.seeds, + p.subseeds, + ) + + if p.scripts is not None: + p.scripts.postprocess_batch_list(p, batch_params, batch_number=n) + x_samples_ddim = batch_params.images + + def infotext(index=0, use_main_prompt=False): + return create_infotext(p, batch_params.prompts, batch_params.seeds, batch_params.subseeds, use_main_prompt=use_main_prompt, index=index, all_negative_prompts=batch_params.negative_prompts) for i, x_sample in enumerate(x_samples_ddim): p.batch_index = i @@ -838,7 +830,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: if p.restore_faces: if opts.save and not p.do_not_save_samples and opts.save_images_before_face_restoration: - images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-face-restoration") + images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-face-restoration") devices.torch_gc() @@ -855,15 +847,15 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: if p.color_corrections is not None and i < len(p.color_corrections): if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction: image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images) - images.save_image(image_without_cc, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-color-correction") + images.save_image(image_without_cc, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-color-correction") image = apply_color_correction(p.color_corrections[i], image) image = apply_overlay(image, p.paste_to, i, p.overlay_images) if opts.samples_save and not p.do_not_save_samples: - images.save_image(image, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p) + images.save_image(image, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p) - text = infotext(n, i) + text = infotext(i) infotexts.append(text) if opts.enable_pnginfo: image.info["parameters"] = text @@ -874,10 +866,10 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: image_mask_composite = Image.composite(image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, p.mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA') if opts.save_mask: - images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask") + images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask") if opts.save_mask_composite: - images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask-composite") + images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask-composite") if opts.return_mask: output_images.append(image_mask) -- cgit v1.2.3 From 7c22bbd3ad5a149e0cf29df887405188fb2d0471 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Wed, 26 Jul 2023 07:04:07 +0300 Subject: attempt 2 --- modules/processing.py | 28 ++++++++++++++++------------ 1 file changed, 16 insertions(+), 12 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 146e409a..e9108f11 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -621,12 +621,12 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter "Sampler": p.sampler_name, "CFG scale": p.cfg_scale, "Image CFG scale": getattr(p, 'image_cfg_scale', None), - "Seed": all_seeds[index], + "Seed": p.all_seeds[0] if use_main_prompt else all_seeds[index], "Face restoration": (opts.face_restoration_model if p.restore_faces else None), "Size": f"{p.width}x{p.height}", "Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash), "Model": (None if not opts.add_model_name_to_info else shared.sd_model.sd_checkpoint_info.name_for_extra), - "Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]), + "Variation seed": (None if p.subseed_strength == 0 else (p.all_subseeds[0] if use_main_prompt else all_subseeds[index])), "Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength), "Seed resize from": (None if p.seed_resize_from_w <= 0 or p.seed_resize_from_h <= 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"), "Denoising strength": getattr(p, 'denoising_strength', None), @@ -807,20 +807,24 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: if p.scripts is not None: p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n) - batch_params = scripts.PostprocessBatchListArgs( - list(x_samples_ddim), - p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size], - p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size], - p.seeds, - p.subseeds, - ) + batch_params = scripts.PostprocessBatchListArgs( + list(x_samples_ddim), + p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size], + p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size], + p.seeds, + p.subseeds, + ) - if p.scripts is not None: p.scripts.postprocess_batch_list(p, batch_params, batch_number=n) + x_samples_ddim = batch_params.images + p.prompts = batch_params.prompts + p.negative_prompts = batch_params.negative_prompts + p.seeds = batch_params.seeds + p.subseeds = batch_params.subseeds def infotext(index=0, use_main_prompt=False): - return create_infotext(p, batch_params.prompts, batch_params.seeds, batch_params.subseeds, use_main_prompt=use_main_prompt, index=index, all_negative_prompts=batch_params.negative_prompts) + return create_infotext(p, p.prompts, p.seeds, p.subseeds, use_main_prompt=use_main_prompt, index=index, all_negative_prompts=p.negative_prompts) for i, x_sample in enumerate(x_samples_ddim): p.batch_index = i @@ -910,7 +914,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: p, images_list=output_images, seed=p.all_seeds[0], - info=infotext(), + info=infotexts[0], comments="".join(f"{comment}\n" for comment in comments), subseed=p.all_subseeds[0], index_of_first_image=index_of_first_image, -- cgit v1.2.3 From 835a7dbf0e73c4cdf945b588d319a6c36652cbe5 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Wed, 26 Jul 2023 07:49:57 +0300 Subject: simplify PostprocessBatchListArgs --- modules/processing.py | 15 +++------------ 1 file changed, 3 insertions(+), 12 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index e9108f11..b0992ee1 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -807,21 +807,12 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: if p.scripts is not None: p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n) - batch_params = scripts.PostprocessBatchListArgs( - list(x_samples_ddim), - p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size], - p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size], - p.seeds, - p.subseeds, - ) + p.prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size] + p.negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size] + batch_params = scripts.PostprocessBatchListArgs(list(x_samples_ddim)) p.scripts.postprocess_batch_list(p, batch_params, batch_number=n) - x_samples_ddim = batch_params.images - p.prompts = batch_params.prompts - p.negative_prompts = batch_params.negative_prompts - p.seeds = batch_params.seeds - p.subseeds = batch_params.subseeds def infotext(index=0, use_main_prompt=False): return create_infotext(p, p.prompts, p.seeds, p.subseeds, use_main_prompt=use_main_prompt, index=index, all_negative_prompts=p.negative_prompts) -- cgit v1.2.3 From 3bca90b249d749ed5429f76e380d2ffa52fc0d41 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Sun, 30 Jul 2023 13:48:27 +0300 Subject: hires fix checkpoint selection --- modules/processing.py | 47 ++++++++++++++++++++++++++++++----------------- 1 file changed, 30 insertions(+), 17 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index b0992ee1..7026487a 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -935,7 +935,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): cached_hr_uc = [None, None] cached_hr_c = [None, None] - def __init__(self, enable_hr: bool = False, denoising_strength: float = 0.75, firstphase_width: int = 0, firstphase_height: int = 0, hr_scale: float = 2.0, hr_upscaler: str = None, hr_second_pass_steps: int = 0, hr_resize_x: int = 0, hr_resize_y: int = 0, hr_sampler_name: str = None, hr_prompt: str = '', hr_negative_prompt: str = '', **kwargs): + def __init__(self, enable_hr: bool = False, denoising_strength: float = 0.75, firstphase_width: int = 0, firstphase_height: int = 0, hr_scale: float = 2.0, hr_upscaler: str = None, hr_second_pass_steps: int = 0, hr_resize_x: int = 0, hr_resize_y: int = 0, hr_checkpoint_name: str = None, hr_sampler_name: str = None, hr_prompt: str = '', hr_negative_prompt: str = '', **kwargs): super().__init__(**kwargs) self.enable_hr = enable_hr self.denoising_strength = denoising_strength @@ -946,11 +946,14 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): self.hr_resize_y = hr_resize_y self.hr_upscale_to_x = hr_resize_x self.hr_upscale_to_y = hr_resize_y + self.hr_checkpoint_name = hr_checkpoint_name + self.hr_checkpoint_info = None self.hr_sampler_name = hr_sampler_name self.hr_prompt = hr_prompt self.hr_negative_prompt = hr_negative_prompt self.all_hr_prompts = None self.all_hr_negative_prompts = None + self.latent_scale_mode = None if firstphase_width != 0 or firstphase_height != 0: self.hr_upscale_to_x = self.width @@ -973,6 +976,14 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): def init(self, all_prompts, all_seeds, all_subseeds): if self.enable_hr: + if self.hr_checkpoint_name: + self.hr_checkpoint_info = sd_models.get_closet_checkpoint_match(self.hr_checkpoint_name) + + if self.hr_checkpoint_info is None: + raise Exception(f'Could not find checkpoint with name {self.hr_checkpoint_name}') + + self.extra_generation_params["Hires checkpoint"] = self.hr_checkpoint_info.short_title + if self.hr_sampler_name is not None and self.hr_sampler_name != self.sampler_name: self.extra_generation_params["Hires sampler"] = self.hr_sampler_name @@ -982,6 +993,11 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): if tuple(self.hr_negative_prompt) != tuple(self.negative_prompt): self.extra_generation_params["Hires negative prompt"] = self.hr_negative_prompt + self.latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest") + if self.enable_hr and self.latent_scale_mode is None: + if not any(x.name == self.hr_upscaler for x in shared.sd_upscalers): + raise Exception(f"could not find upscaler named {self.hr_upscaler}") + if opts.use_old_hires_fix_width_height and self.applied_old_hires_behavior_to != (self.width, self.height): self.hr_resize_x = self.width self.hr_resize_y = self.height @@ -1020,14 +1036,6 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): self.truncate_x = (self.hr_upscale_to_x - target_w) // opt_f self.truncate_y = (self.hr_upscale_to_y - target_h) // opt_f - # special case: the user has chosen to do nothing - if self.hr_upscale_to_x == self.width and self.hr_upscale_to_y == self.height: - self.enable_hr = False - self.denoising_strength = None - self.extra_generation_params.pop("Hires upscale", None) - self.extra_generation_params.pop("Hires resize", None) - return - if not state.processing_has_refined_job_count: if state.job_count == -1: state.job_count = self.n_iter @@ -1045,17 +1053,22 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts): self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model) - latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest") - if self.enable_hr and latent_scale_mode is None: - if not any(x.name == self.hr_upscaler for x in shared.sd_upscalers): - raise Exception(f"could not find upscaler named {self.hr_upscaler}") - x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x)) if not self.enable_hr: return samples + current = shared.sd_model.sd_checkpoint_info + try: + if self.hr_checkpoint_info is not None: + sd_models.reload_model_weights(info=self.hr_checkpoint_info) + + return self.sample_hr_pass(samples, seeds, subseeds, subseed_strength, prompts) + finally: + sd_models.reload_model_weights(info=current) + + def sample_hr_pass(self, samples, seeds, subseeds, subseed_strength, prompts): self.is_hr_pass = True target_width = self.hr_upscale_to_x @@ -1073,11 +1086,11 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): info = create_infotext(self, self.all_prompts, self.all_seeds, self.all_subseeds, [], iteration=self.iteration, position_in_batch=index) images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, info=info, p=self, suffix="-before-highres-fix") - if latent_scale_mode is not None: + if self.latent_scale_mode is not None: for i in range(samples.shape[0]): save_intermediate(samples, i) - samples = torch.nn.functional.interpolate(samples, size=(target_height // opt_f, target_width // opt_f), mode=latent_scale_mode["mode"], antialias=latent_scale_mode["antialias"]) + samples = torch.nn.functional.interpolate(samples, size=(target_height // opt_f, target_width // opt_f), mode=self.latent_scale_mode["mode"], antialias=self.latent_scale_mode["antialias"]) # Avoid making the inpainting conditioning unless necessary as # this does need some extra compute to decode / encode the image again. @@ -1193,7 +1206,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): self.hr_uc = None self.hr_c = None - if self.enable_hr: + if self.enable_hr and self.hr_checkpoint_info is None: if shared.opts.hires_fix_use_firstpass_conds: self.calculate_hr_conds() -- cgit v1.2.3 From 40cd59207b96f9e522fdc104b43279880b671ce4 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Sun, 30 Jul 2023 14:10:26 +0300 Subject: make it work with SDXL --- modules/processing.py | 7 +++++-- 1 file changed, 5 insertions(+), 2 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 7026487a..b8af1301 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -1197,8 +1197,11 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): if self.hr_c is not None: return - self.hr_uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, self.hr_negative_prompts, self.steps * self.step_multiplier, [self.cached_hr_uc, self.cached_uc], self.hr_extra_network_data) - self.hr_c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, self.hr_prompts, self.steps * self.step_multiplier, [self.cached_hr_c, self.cached_c], self.hr_extra_network_data) + hr_prompts = prompt_parser.SdConditioning(self.hr_prompts, width=self.hr_upscale_to_x, height=self.hr_upscale_to_y) + hr_negative_prompts = prompt_parser.SdConditioning(self.hr_negative_prompts, width=self.hr_upscale_to_x, height=self.hr_upscale_to_y, is_negative_prompt=True) + + self.hr_uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, hr_negative_prompts, self.steps * self.step_multiplier, [self.cached_hr_uc, self.cached_uc], self.hr_extra_network_data) + self.hr_c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, hr_prompts, self.steps * self.step_multiplier, [self.cached_hr_c, self.cached_c], self.hr_extra_network_data) def setup_conds(self): super().setup_conds() -- cgit v1.2.3 From 77761e7bad8a7cbffc9028dc0b2f63169aaf25f9 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Sun, 30 Jul 2023 14:10:33 +0300 Subject: linter --- modules/processing.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index b8af1301..21dbef16 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -1055,6 +1055,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x)) + del x if not self.enable_hr: return samples @@ -1137,7 +1138,6 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, p=self) # GC now before running the next img2img to prevent running out of memory - x = None devices.torch_gc() if not self.disable_extra_networks: -- cgit v1.2.3 From eec540b22798ddcf8a03d947519c36635d77d722 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Sun, 30 Jul 2023 15:04:12 +0300 Subject: repair non-latent upscaling broken for SDXL --- modules/processing.py | 1 + 1 file changed, 1 insertion(+) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 21dbef16..6fb14516 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -1119,6 +1119,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): decoded_samples = torch.from_numpy(np.array(batch_images)) decoded_samples = decoded_samples.to(shared.device) decoded_samples = 2. * decoded_samples - 1. + decoded_samples = decoded_samples.to(shared.device, dtype=devices.dtype_vae) samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples)) -- cgit v1.2.3 From a64fbe89288802f8b5ec8ca7bcab5aaf2c7bfea5 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Sun, 30 Jul 2023 15:12:09 +0300 Subject: make it possible to use checkpoints of different types (SD1, SDXL) in first and second pass of hires fix --- modules/processing.py | 10 +++++++--- 1 file changed, 7 insertions(+), 3 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 6fb14516..c4da208f 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -1060,16 +1060,21 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): if not self.enable_hr: return samples + if self.latent_scale_mode is None: + decoded_samples = decode_first_stage(self.sd_model, samples) + else: + decoded_samples = None + current = shared.sd_model.sd_checkpoint_info try: if self.hr_checkpoint_info is not None: sd_models.reload_model_weights(info=self.hr_checkpoint_info) - return self.sample_hr_pass(samples, seeds, subseeds, subseed_strength, prompts) + return self.sample_hr_pass(samples, decoded_samples, seeds, subseeds, subseed_strength, prompts) finally: sd_models.reload_model_weights(info=current) - def sample_hr_pass(self, samples, seeds, subseeds, subseed_strength, prompts): + def sample_hr_pass(self, samples, decoded_samples, seeds, subseeds, subseed_strength, prompts): self.is_hr_pass = True target_width = self.hr_upscale_to_x @@ -1100,7 +1105,6 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): else: image_conditioning = self.txt2img_image_conditioning(samples) else: - decoded_samples = decode_first_stage(self.sd_model, samples) lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0) batch_images = [] -- cgit v1.2.3 From cc53db6652b11e6f7bca42c3aa93bd6761ed3d3f Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Sun, 30 Jul 2023 15:30:33 +0300 Subject: this time for sure --- modules/processing.py | 16 +++++++++++++--- 1 file changed, 13 insertions(+), 3 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index c4da208f..3190b964 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -538,8 +538,12 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see return x +class DecodedSamples(list): + already_decoded = True + + def decode_latent_batch(model, batch, target_device=None, check_for_nans=False): - samples = [] + samples = DecodedSamples() for i in range(batch.shape[0]): sample = decode_first_stage(model, batch[i:i + 1])[0] @@ -793,7 +797,11 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast(): samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts) - x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True) + if getattr(samples_ddim, 'already_decoded', False): + x_samples_ddim = samples_ddim + else: + x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True) + x_samples_ddim = torch.stack(x_samples_ddim).float() x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) @@ -1161,9 +1169,11 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio()) + decoded_samples = decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True) + self.is_hr_pass = False - return samples + return decoded_samples def close(self): super().close() -- cgit v1.2.3 From 02038036ff571e0f04a94c3e279609666e239dec Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Sun, 30 Jul 2023 16:16:31 +0300 Subject: make it so that VAE NaNs autodetection also works during first pass of hires fix --- modules/processing.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 3190b964..0677de81 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -1069,7 +1069,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): return samples if self.latent_scale_mode is None: - decoded_samples = decode_first_stage(self.sd_model, samples) + decoded_samples = torch.stack(decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)) else: decoded_samples = None -- cgit v1.2.3 From 0af4127fd14360ebb12c6569d98aebf8047abbfc Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Sun, 30 Jul 2023 19:36:24 +0300 Subject: delete the field that is preventing the model from being unloaded and is causing increased RAM usage --- modules/processing.py | 4 ++++ 1 file changed, 4 insertions(+) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 0677de81..b09433b0 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -1076,11 +1076,15 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): current = shared.sd_model.sd_checkpoint_info try: if self.hr_checkpoint_info is not None: + del self.sampler sd_models.reload_model_weights(info=self.hr_checkpoint_info) + devices.torch_gc() return self.sample_hr_pass(samples, decoded_samples, seeds, subseeds, subseed_strength, prompts) finally: + del self.sampler sd_models.reload_model_weights(info=current) + devices.torch_gc() def sample_hr_pass(self, samples, decoded_samples, seeds, subseeds, subseed_strength, prompts): self.is_hr_pass = True -- cgit v1.2.3 From dca121e9035ba36b3f7484c8a31a7776d85c0960 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Mon, 31 Jul 2023 09:13:07 +0300 Subject: set the field to None instead --- modules/processing.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index b09433b0..35e7b87e 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -1076,13 +1076,13 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): current = shared.sd_model.sd_checkpoint_info try: if self.hr_checkpoint_info is not None: - del self.sampler + self.sampler = None sd_models.reload_model_weights(info=self.hr_checkpoint_info) devices.torch_gc() return self.sample_hr_pass(samples, decoded_samples, seeds, subseeds, subseed_strength, prompts) finally: - del self.sampler + self.sampler = None sd_models.reload_model_weights(info=current) devices.torch_gc() -- cgit v1.2.3 From 29d7e31d89e9d686784eacbdbfc5b15959eb4449 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Mon, 31 Jul 2023 10:43:26 +0300 Subject: repair AttributeError: 'NoneType' object has no attribute 'conditioning_key' --- modules/processing.py | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 35e7b87e..1f0c0b3b 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -1104,6 +1104,13 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): info = create_infotext(self, self.all_prompts, self.all_seeds, self.all_subseeds, [], iteration=self.iteration, position_in_batch=index) images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, info=info, p=self, suffix="-before-highres-fix") + img2img_sampler_name = self.hr_sampler_name or self.sampler_name + + if self.sampler_name in ['PLMS', 'UniPC']: # PLMS/UniPC do not support img2img so we just silently switch to DDIM + img2img_sampler_name = 'DDIM' + + self.sampler = sd_samplers.create_sampler(img2img_sampler_name, self.sd_model) + if self.latent_scale_mode is not None: for i in range(samples.shape[0]): save_intermediate(samples, i) @@ -1143,13 +1150,6 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): shared.state.nextjob() - img2img_sampler_name = self.hr_sampler_name or self.sampler_name - - if self.sampler_name in ['PLMS', 'UniPC']: # PLMS/UniPC do not support img2img so we just silently switch to DDIM - img2img_sampler_name = 'DDIM' - - self.sampler = sd_samplers.create_sampler(img2img_sampler_name, self.sd_model) - samples = samples[:, :, self.truncate_y//2:samples.shape[2]-(self.truncate_y+1)//2, self.truncate_x//2:samples.shape[3]-(self.truncate_x+1)//2] noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, p=self) -- cgit v1.2.3 From c09bc2c60856ca1ab2243386176badf909affdbe Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Mon, 31 Jul 2023 13:20:26 +0300 Subject: fix "clamp_scalar_cpu" not implemented for 'Half' --- modules/processing.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 1f0c0b3b..f8f8bddc 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -1069,7 +1069,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): return samples if self.latent_scale_mode is None: - decoded_samples = torch.stack(decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)) + decoded_samples = torch.stack(decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True)).to(dtype=torch.float32) else: decoded_samples = None -- cgit v1.2.3 From ccb92339348f6973de39cde062982a51a4cd0818 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Wed, 2 Aug 2023 18:53:09 +0300 Subject: add yet another torch_gc to reclaim some of VRAM after the initial stage of img2img --- modules/processing.py | 1 + 1 file changed, 1 insertion(+) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index b0992ee1..0b66cd2a 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -1348,6 +1348,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): image = image.to(shared.device, dtype=devices.dtype_vae) self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image)) + devices.torch_gc() if self.resize_mode == 3: self.init_latent = torch.nn.functional.interpolate(self.init_latent, size=(self.height // opt_f, self.width // opt_f), mode="bilinear") -- cgit v1.2.3 From 84b6fcd02ca6d6ab48c4b6be4bb8724b1c2e7014 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Thu, 3 Aug 2023 00:00:23 +0300 Subject: add NV option for Random number generator source setting, which allows to generate same pictures on CPU/AMD/Mac as on NVidia videocards. --- modules/processing.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 0b66cd2a..8f34c8b4 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -492,7 +492,7 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see noise_shape = shape if seed_resize_from_h <= 0 or seed_resize_from_w <= 0 else (shape[0], seed_resize_from_h//8, seed_resize_from_w//8) subnoise = None - if subseeds is not None: + if subseeds is not None and subseed_strength != 0: subseed = 0 if i >= len(subseeds) else subseeds[i] subnoise = devices.randn(subseed, noise_shape) @@ -524,7 +524,7 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see cnt = p.sampler.number_of_needed_noises(p) if eta_noise_seed_delta > 0: - torch.manual_seed(seed + eta_noise_seed_delta) + devices.manual_seed(seed + eta_noise_seed_delta) for j in range(cnt): sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape))) @@ -636,7 +636,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter "Token merging ratio": None if token_merging_ratio == 0 else token_merging_ratio, "Token merging ratio hr": None if not enable_hr or token_merging_ratio_hr == 0 else token_merging_ratio_hr, "Init image hash": getattr(p, 'init_img_hash', None), - "RNG": opts.randn_source if opts.randn_source != "GPU" else None, + "RNG": opts.randn_source if opts.randn_source != "GPU" and opts.randn_source != "NV" else None, "NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond, **p.extra_generation_params, "Version": program_version() if opts.add_version_to_infotext else None, -- cgit v1.2.3 From f0c1063a707a4a43823b0ed00e2a8eeb22a9ed0a Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Fri, 4 Aug 2023 09:09:09 +0300 Subject: resolve some of circular import issues for kohaku --- modules/processing.py | 7 +------ 1 file changed, 1 insertion(+), 6 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 8f34c8b4..8086a2b0 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -30,6 +30,7 @@ from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion from einops import repeat, rearrange from blendmodes.blend import blendLayers, BlendType +decode_first_stage = sd_samplers_common.decode_first_stage # some of those options should not be changed at all because they would break the model, so I removed them from options. opt_C = 4 @@ -572,12 +573,6 @@ def decode_latent_batch(model, batch, target_device=None, check_for_nans=False): return samples -def decode_first_stage(model, x): - x = model.decode_first_stage(x.to(devices.dtype_vae)) - - return x - - def get_fixed_seed(seed): if seed is None or seed == '' or seed == -1: return int(random.randrange(4294967294)) -- cgit v1.2.3