From da464a3fb39ecc6ea7b22fe87271194480d8501c Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Wed, 12 Jul 2023 23:52:43 +0300 Subject: SDXL support --- modules/prompt_parser.py | 23 ++++++++++++++++++++--- 1 file changed, 20 insertions(+), 3 deletions(-) (limited to 'modules/prompt_parser.py') diff --git a/modules/prompt_parser.py b/modules/prompt_parser.py index d7f9e9a9..33810669 100644 --- a/modules/prompt_parser.py +++ b/modules/prompt_parser.py @@ -1,3 +1,5 @@ +from __future__ import annotations + import re from collections import namedtuple from typing import List @@ -109,7 +111,19 @@ def get_learned_conditioning_prompt_schedules(prompts, steps): ScheduledPromptConditioning = namedtuple("ScheduledPromptConditioning", ["end_at_step", "cond"]) -def get_learned_conditioning(model, prompts, steps): +class SdConditioning(list): + """ + A list with prompts for stable diffusion's conditioner model. + Can also specify width and height of created image - SDXL needs it. + """ + def __init__(self, prompts, width=None, height=None): + super().__init__() + self.extend(prompts) + self.width = width or getattr(prompts, 'width', None) + self.height = height or getattr(prompts, 'height', None) + + +def get_learned_conditioning(model, prompts: SdConditioning | list[str], steps): """converts a list of prompts into a list of prompt schedules - each schedule is a list of ScheduledPromptConditioning, specifying the comdition (cond), and the sampling step at which this condition is to be replaced by the next one. @@ -160,11 +174,13 @@ def get_learned_conditioning(model, prompts, steps): re_AND = re.compile(r"\bAND\b") re_weight = re.compile(r"^(.*?)(?:\s*:\s*([-+]?(?:\d+\.?|\d*\.\d+)))?\s*$") -def get_multicond_prompt_list(prompts): + +def get_multicond_prompt_list(prompts: SdConditioning | list[str]): res_indexes = [] - prompt_flat_list = [] prompt_indexes = {} + prompt_flat_list = SdConditioning(prompts) + prompt_flat_list.clear() for prompt in prompts: subprompts = re_AND.split(prompt) @@ -201,6 +217,7 @@ class MulticondLearnedConditioning: self.shape: tuple = shape # the shape field is needed to send this object to DDIM/PLMS self.batch: List[List[ComposableScheduledPromptConditioning]] = batch + def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearnedConditioning: """same as get_learned_conditioning, but returns a list of ScheduledPromptConditioning along with the weight objects for each prompt. For each prompt, the list is obtained by splitting the prompt using the AND separator. -- cgit v1.2.3